GeminiBalance / app /service /chat /vertex_express_chat_service.py
CatPtain's picture
Upload 77 files
76b9762 verified
# app/services/chat_service.py
import json
import re
import datetime
import time
from typing import Any, AsyncGenerator, Dict, List
from app.config.config import settings
from app.core.constants import GEMINI_2_FLASH_EXP_SAFETY_SETTINGS
from app.domain.gemini_models import GeminiRequest
from app.handler.response_handler import GeminiResponseHandler
from app.handler.stream_optimizer import gemini_optimizer
from app.log.logger import get_gemini_logger
from app.service.client.api_client import GeminiApiClient
from app.service.key.key_manager import KeyManager
from app.database.services import add_error_log, add_request_log
logger = get_gemini_logger()
def _has_image_parts(contents: List[Dict[str, Any]]) -> bool:
"""判断消息是否包含图片部分"""
for content in contents:
if "parts" in content:
for part in content["parts"]:
if "image_url" in part or "inline_data" in part:
return True
return False
def _build_tools(model: str, payload: Dict[str, Any]) -> List[Dict[str, Any]]:
"""构建工具"""
def _merge_tools(tools: List[Dict[str, Any]]) -> Dict[str, Any]:
record = dict()
for item in tools:
if not item or not isinstance(item, dict):
continue
for k, v in item.items():
if k == "functionDeclarations" and v and isinstance(v, list):
functions = record.get("functionDeclarations", [])
functions.extend(v)
record["functionDeclarations"] = functions
else:
record[k] = v
return record
tool = dict()
if payload and isinstance(payload, dict) and "tools" in payload:
if payload.get("tools") and isinstance(payload.get("tools"), dict):
payload["tools"] = [payload.get("tools")]
items = payload.get("tools", [])
if items and isinstance(items, list):
tool.update(_merge_tools(items))
if (
settings.TOOLS_CODE_EXECUTION_ENABLED
and not (model.endswith("-search") or "-thinking" in model)
and not _has_image_parts(payload.get("contents", []))
):
tool["codeExecution"] = {}
if model.endswith("-search"):
tool["googleSearch"] = {}
# 解决 "Tool use with function calling is unsupported" 问题
if tool.get("functionDeclarations"):
tool.pop("googleSearch", None)
tool.pop("codeExecution", None)
return [tool] if tool else []
def _get_safety_settings(model: str) -> List[Dict[str, str]]:
"""获取安全设置"""
if model == "gemini-2.0-flash-exp":
return GEMINI_2_FLASH_EXP_SAFETY_SETTINGS
return settings.SAFETY_SETTINGS
def _build_payload(model: str, request: GeminiRequest) -> Dict[str, Any]:
"""构建请求payload"""
request_dict = request.model_dump()
if request.generationConfig:
if request.generationConfig.maxOutputTokens is None:
# 如果未指定最大输出长度,则不传递该字段,解决截断的问题
request_dict["generationConfig"].pop("maxOutputTokens")
payload = {
"contents": request_dict.get("contents", []),
"tools": _build_tools(model, request_dict),
"safetySettings": _get_safety_settings(model),
"generationConfig": request_dict.get("generationConfig"),
"systemInstruction": request_dict.get("systemInstruction"),
}
if model.endswith("-image") or model.endswith("-image-generation"):
payload.pop("systemInstruction")
payload["generationConfig"]["responseModalities"] = ["Text", "Image"]
if model.endswith("-non-thinking"):
payload["generationConfig"]["thinkingConfig"] = {"thinkingBudget": 0}
if model in settings.THINKING_BUDGET_MAP:
payload["generationConfig"]["thinkingConfig"] = {"thinkingBudget": settings.THINKING_BUDGET_MAP.get(model,1000)}
return payload
class GeminiChatService:
"""聊天服务"""
def __init__(self, base_url: str, key_manager: KeyManager):
self.api_client = GeminiApiClient(base_url, settings.TIME_OUT)
self.key_manager = key_manager
self.response_handler = GeminiResponseHandler()
def _extract_text_from_response(self, response: Dict[str, Any]) -> str:
"""从响应中提取文本内容"""
if not response.get("candidates"):
return ""
candidate = response["candidates"][0]
content = candidate.get("content", {})
parts = content.get("parts", [])
if parts and "text" in parts[0]:
return parts[0].get("text", "")
return ""
def _create_char_response(
self, original_response: Dict[str, Any], text: str
) -> Dict[str, Any]:
"""创建包含指定文本的响应"""
response_copy = json.loads(json.dumps(original_response)) # 深拷贝
if response_copy.get("candidates") and response_copy["candidates"][0].get(
"content", {}
).get("parts"):
response_copy["candidates"][0]["content"]["parts"][0]["text"] = text
return response_copy
async def generate_content(
self, model: str, request: GeminiRequest, api_key: str
) -> Dict[str, Any]:
"""生成内容"""
payload = _build_payload(model, request)
start_time = time.perf_counter()
request_datetime = datetime.datetime.now()
is_success = False
status_code = None
response = None
try:
response = await self.api_client.generate_content(payload, model, api_key)
is_success = True
status_code = 200
return self.response_handler.handle_response(response, model, stream=False)
except Exception as e:
is_success = False
error_log_msg = str(e)
logger.error(f"Normal API call failed with error: {error_log_msg}")
match = re.search(r"status code (\d+)", error_log_msg)
if match:
status_code = int(match.group(1))
else:
status_code = 500
await add_error_log(
gemini_key=api_key,
model_name=model,
error_type="gemini-chat-non-stream",
error_log=error_log_msg,
error_code=status_code,
request_msg=payload
)
raise e
finally:
end_time = time.perf_counter()
latency_ms = int((end_time - start_time) * 1000)
await add_request_log(
model_name=model,
api_key=api_key,
is_success=is_success,
status_code=status_code,
latency_ms=latency_ms,
request_time=request_datetime
)
async def stream_generate_content(
self, model: str, request: GeminiRequest, api_key: str
) -> AsyncGenerator[str, None]:
"""流式生成内容"""
retries = 0
max_retries = settings.MAX_RETRIES
payload = _build_payload(model, request)
is_success = False
status_code = None
final_api_key = api_key
while retries < max_retries:
request_datetime = datetime.datetime.now()
start_time = time.perf_counter()
current_attempt_key = api_key
final_api_key = current_attempt_key # Update final key used
try:
async for line in self.api_client.stream_generate_content(
payload, model, current_attempt_key
):
# print(line)
if line.startswith("data:"):
line = line[6:]
response_data = self.response_handler.handle_response(
json.loads(line), model, stream=True
)
text = self._extract_text_from_response(response_data)
# 如果有文本内容,且开启了流式输出优化器,则使用流式输出优化器处理
if text and settings.STREAM_OPTIMIZER_ENABLED:
# 使用流式输出优化器处理文本输出
async for (
optimized_chunk
) in gemini_optimizer.optimize_stream_output(
text,
lambda t: self._create_char_response(response_data, t),
lambda c: "data: " + json.dumps(c) + "\n\n",
):
yield optimized_chunk
else:
# 如果没有文本内容(如工具调用等),整块输出
yield "data: " + json.dumps(response_data) + "\n\n"
logger.info("Streaming completed successfully")
is_success = True
status_code = 200
break
except Exception as e:
retries += 1
is_success = False
error_log_msg = str(e)
logger.warning(
f"Streaming API call failed with error: {error_log_msg}. Attempt {retries} of {max_retries}"
)
match = re.search(r"status code (\d+)", error_log_msg)
if match:
status_code = int(match.group(1))
else:
status_code = 500
await add_error_log(
gemini_key=current_attempt_key,
model_name=model,
error_type="gemini-chat-stream",
error_log=error_log_msg,
error_code=status_code,
request_msg=payload
)
api_key = await self.key_manager.handle_api_failure(current_attempt_key, retries)
if api_key:
logger.info(f"Switched to new API key: {api_key}")
else:
logger.error(f"No valid API key available after {retries} retries.")
break
if retries >= max_retries:
logger.error(
f"Max retries ({max_retries}) reached for streaming."
)
break
finally:
end_time = time.perf_counter()
latency_ms = int((end_time - start_time) * 1000)
await add_request_log(
model_name=model,
api_key=final_api_key,
is_success=is_success,
status_code=status_code,
latency_ms=latency_ms,
request_time=request_datetime
)