Spaces:
Sleeping
Sleeping
Caseyishere
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
|
7 |
+
# Load the model and tokenizer from Hugging Face
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("Caseyishere/StoryCraft", num_labels=5)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("Caseyishere/StoryCraft")
|
10 |
+
|
11 |
+
# Streamlit app interface
|
12 |
+
st.set_page_config(page_title="Story Craft", page_icon="🍽️", layout="centered")
|
13 |
+
|
14 |
+
# Set page title and styles
|
15 |
+
st.title("🍽️ Welcome to Story Craft 🍽️")
|
16 |
+
st.markdown("""
|
17 |
+
<style>
|
18 |
+
.big-font {
|
19 |
+
font-size:24px !important;
|
20 |
+
font-weight:bold;
|
21 |
+
}
|
22 |
+
.highlight {
|
23 |
+
color: #FF4B4B;
|
24 |
+
}
|
25 |
+
.divider {
|
26 |
+
border-top: 2px solid #bbb;
|
27 |
+
margin: 20px 0;
|
28 |
+
}
|
29 |
+
.menu {
|
30 |
+
font-size:18px !important;
|
31 |
+
line-height: 1.8;
|
32 |
+
font-family: 'Arial', sans-serif;
|
33 |
+
}
|
34 |
+
</style>
|
35 |
+
""", unsafe_allow_html=True)
|
36 |
+
|
37 |
+
# Get user input
|
38 |
+
user_input = st.text_input("Please tell us what you like today:")
|
39 |
+
|
40 |
+
if user_input:
|
41 |
+
# Preprocess the input using the tokenizer
|
42 |
+
inputs = tokenizer(user_input, padding=True, truncation=True, return_tensors='pt')
|
43 |
+
|
44 |
+
# Get predictions from the model
|
45 |
+
outputs = model(**inputs)
|
46 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
47 |
+
predictions = predictions.cpu().detach().numpy()
|
48 |
+
|
49 |
+
# Get the predicted label
|
50 |
+
predicted_label = np.argmax(predictions)
|
51 |
+
|
52 |
+
# Display the predicted label with its corresponding sentiment
|
53 |
+
label_map = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
54 |
+
|
55 |
+
# Display the predicted label and corresponding sentiment
|
56 |
+
st.write(f"Predicted label is {predicted_label} ({label_map.get(predicted_label, 'Unknown')} Sentence)")
|
57 |
+
|
58 |
+
# Generate response based on predicted label
|
59 |
+
responses = {
|
60 |
+
0: '''**Appetizer**: Escargots: Snails cooked in garlic butter with herbs
|
61 |
+
**Main Course**: Coq au vin: Chicken braised in red wine with mushrooms and onions
|
62 |
+
**Side Dish**: Pommes frites: French fries
|
63 |
+
**Dessert**: Crème brûlée: Custard topped with caramelized sugar
|
64 |
+
**Beverage**: Bordeaux: A red wine from the Bordeaux region of France
|
65 |
+
**Cheese Course**: Fromage à raclette: Melted cheese served with bread, potatoes, and pickles''',
|
66 |
+
1: '''**Appetizer**: Spätzle: Swabian egg noodles with cheese
|
67 |
+
**Main Course**: Wiener schnitzel: Breaded veal cutlet
|
68 |
+
**Side Dish**: Sauerkraut: Fermented cabbage
|
69 |
+
**Dessert**: Schwarzwälder Kirschtorte: Black Forest cake
|
70 |
+
**Beverage**: Kölsch: A light, golden ale from Cologne
|
71 |
+
**Cheese Course**: Käsekuchen: German cheesecake''',
|
72 |
+
2: '''**Appetizer**: Creamy Spinach and Artichoke Dip with tortilla chips
|
73 |
+
**Main Course**: Ribeye Steak cooked to your desired temperature (medium-rare, medium, well-done)
|
74 |
+
**Side Dish**: Baked Potato topped with butter, sour cream, and bacon bits
|
75 |
+
**Dessert**: Chocolate Lava Cake with vanilla ice cream
|
76 |
+
**Beverage**: Red Wine (ask your server for a recommendation based on your preferences)
|
77 |
+
**Salad**: Caesar Salad with romaine lettuce, croutons, Parmesan cheese, and Caesar dressing
|
78 |
+
**Soup**: French Onion Soup with caramelized onions, Gruyère cheese, and croutons''',
|
79 |
+
3: "Oops! Something went wrong!"
|
80 |
+
}
|
81 |
+
|
82 |
+
# Display the response based on the predicted label
|
83 |
+
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
|
84 |
+
st.markdown(f'<div class="big-font highlight">Here is your curated menu based on your input:</div>', unsafe_allow_html=True)
|
85 |
+
|
86 |
+
# Correcting the misplaced closing parenthesis
|
87 |
+
st.write(responses.get(predicted_label, "I'm not sure what you're asking for."))
|
88 |
+
|
89 |
+
# Add a separator
|
90 |
+
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
|