Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,139 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
-
import paddlehub as hub
|
8 |
import onnxruntime
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
u2net_model = hub.Module(name='U2Net')
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
if
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
else:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
if
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
output = outputs[0][0]
|
|
|
68 |
output = output.transpose(1, 2, 0)
|
69 |
-
output =
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
def process_image(input_image, mask_option):
|
75 |
-
"""Main function for Gradio interface."""
|
76 |
-
imageio.imwrite("./data/data.png", input_image)
|
77 |
|
78 |
-
image = prepare_image(input_image)
|
79 |
-
mask = generate_mask(input_image, method=mask_option)
|
80 |
-
|
81 |
-
inpainted_image = inpaint_image(image, mask)
|
82 |
-
inpainted_image = inpainted_image.resize(Image.open("./data/data.png").size)
|
83 |
-
inpainted_image.save("./dataout/data_mask.png")
|
84 |
-
return "./dataout/data_mask.png", "./data/data_mask.png"
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
-
fn=
|
88 |
inputs=[
|
89 |
gr.Image(label="Input Image", type="numpy"),
|
90 |
gr.Radio(choices=["automatic", ],
|
|
|
1 |
import os
|
2 |
+
os.system("wget https://huggingface.co/Carve/LaMa-ONNX/resolve/main/lama_fp32.onnx")
|
3 |
+
os.system("pip install onnxruntime imageio")
|
4 |
+
import cv2
|
5 |
+
import paddlehub as hub
|
6 |
import gradio as gr
|
7 |
+
import torch
|
8 |
+
from PIL import Image, ImageOps
|
9 |
+
import numpy as np
|
10 |
+
import imageio
|
11 |
+
os.mkdir("data")
|
12 |
+
os.mkdir("dataout")
|
13 |
+
model = hub.Module(name='U2Net')
|
14 |
import cv2
|
15 |
import numpy as np
|
|
|
16 |
import onnxruntime
|
17 |
+
import torch
|
18 |
+
from PIL import Image
|
19 |
+
sess_options = onnxruntime.SessionOptions()
|
20 |
+
rmodel = onnxruntime.InferenceSession('lama_fp32.onnx', sess_options=sess_options)
|
21 |
|
22 |
+
# Source https://github.com/advimman/lama
|
23 |
+
def get_image(image):
|
24 |
+
if isinstance(image, Image.Image):
|
25 |
+
img = np.array(image)
|
26 |
+
elif isinstance(image, np.ndarray):
|
27 |
+
img = image.copy()
|
28 |
+
else:
|
29 |
+
raise Exception("Input image should be either PIL Image or numpy array!")
|
30 |
|
31 |
+
if img.ndim == 3:
|
32 |
+
img = np.transpose(img, (2, 0, 1)) # chw
|
33 |
+
elif img.ndim == 2:
|
34 |
+
img = img[np.newaxis, ...]
|
35 |
|
36 |
+
assert img.ndim == 3
|
|
|
37 |
|
38 |
+
img = img.astype(np.float32) / 255
|
39 |
+
return img
|
40 |
|
41 |
+
|
42 |
+
def ceil_modulo(x, mod):
|
43 |
+
if x % mod == 0:
|
44 |
+
return x
|
45 |
+
return (x // mod + 1) * mod
|
46 |
+
|
47 |
+
|
48 |
+
def scale_image(img, factor, interpolation=cv2.INTER_AREA):
|
49 |
+
if img.shape[0] == 1:
|
50 |
+
img = img[0]
|
51 |
else:
|
52 |
+
img = np.transpose(img, (1, 2, 0))
|
53 |
+
|
54 |
+
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation)
|
55 |
+
|
56 |
+
if img.ndim == 2:
|
57 |
+
img = img[None, ...]
|
58 |
+
else:
|
59 |
+
img = np.transpose(img, (2, 0, 1))
|
60 |
+
return img
|
61 |
+
|
62 |
+
|
63 |
+
def pad_img_to_modulo(img, mod):
|
64 |
+
channels, height, width = img.shape
|
65 |
+
out_height = ceil_modulo(height, mod)
|
66 |
+
out_width = ceil_modulo(width, mod)
|
67 |
+
return np.pad(
|
68 |
+
img,
|
69 |
+
((0, 0), (0, out_height - height), (0, out_width - width)),
|
70 |
+
mode="symmetric",
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
def prepare_img_and_mask(image, mask, device, pad_out_to_modulo=8, scale_factor=None):
|
75 |
+
out_image = get_image(image)
|
76 |
+
out_mask = get_image(mask)
|
77 |
+
|
78 |
+
if scale_factor is not None:
|
79 |
+
out_image = scale_image(out_image, scale_factor)
|
80 |
+
out_mask = scale_image(out_mask, scale_factor, interpolation=cv2.INTER_NEAREST)
|
81 |
+
|
82 |
+
if pad_out_to_modulo is not None and pad_out_to_modulo > 1:
|
83 |
+
out_image = pad_img_to_modulo(out_image, pad_out_to_modulo)
|
84 |
+
out_mask = pad_img_to_modulo(out_mask, pad_out_to_modulo)
|
85 |
+
|
86 |
+
out_image = torch.from_numpy(out_image).unsqueeze(0).to(device)
|
87 |
+
out_mask = torch.from_numpy(out_mask).unsqueeze(0).to(device)
|
88 |
+
|
89 |
+
out_mask = (out_mask > 0) * 1
|
90 |
+
|
91 |
+
return out_image, out_mask
|
92 |
+
|
93 |
+
|
94 |
+
def predict(jpg, msk):
|
95 |
+
|
96 |
+
|
97 |
+
imagex = Image.open(jpg)
|
98 |
+
mask = Image.open(msk).convert("L")
|
99 |
+
|
100 |
+
image, mask = prepare_img_and_mask(imagex.resize((512, 512)), mask.resize((512, 512)), 'cpu')
|
101 |
+
# Run the model
|
102 |
+
outputs = rmodel.run(None, {'image': image.numpy().astype(np.float32), 'mask': mask.numpy().astype(np.float32)})
|
103 |
+
|
104 |
output = outputs[0][0]
|
105 |
+
# Postprocess the outputs
|
106 |
output = output.transpose(1, 2, 0)
|
107 |
+
output = output.astype(np.uint8)
|
108 |
+
output = Image.fromarray(output)
|
109 |
+
output = output.resize(imagex.size)
|
110 |
+
output.save("/home/user/app/dataout/data_mask.png")
|
111 |
+
|
112 |
|
113 |
+
def infer(img,option):
|
114 |
+
print(type(img))
|
115 |
+
print(type(img["image"]))
|
116 |
+
print(type(img["mask"]))
|
117 |
+
imageio.imwrite("./data/data.png", img["image"])
|
118 |
+
if option == "automatic (U2net)":
|
119 |
+
result = model.Segmentation(
|
120 |
+
images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
|
121 |
+
paths=None,
|
122 |
+
batch_size=1,
|
123 |
+
input_size=320,
|
124 |
+
output_dir='output',
|
125 |
+
visualization=True)
|
126 |
+
im = Image.fromarray(result[0]['mask'])
|
127 |
+
im.save("./data/data_mask.png")
|
128 |
+
else:
|
129 |
+
imageio.imwrite("./data/data_mask.png", img["mask"])
|
130 |
+
predict("./data/data.png", "./data/data_mask.png")
|
131 |
+
return "./dataout/data_mask.png","./data/data_mask.png"
|
132 |
|
|
|
|
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
iface = gr.Interface(
|
136 |
+
fn=infer,
|
137 |
inputs=[
|
138 |
gr.Image(label="Input Image", type="numpy"),
|
139 |
gr.Radio(choices=["automatic", ],
|