Spaces:
Running
Running
#!/usr/bin/env python3 | |
import glob | |
import os | |
import shutil | |
import traceback | |
import PIL.Image as Image | |
import numpy as np | |
from joblib import Parallel, delayed | |
from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop | |
from saicinpainting.evaluation.utils import load_yaml, SmallMode | |
from saicinpainting.training.data.masks import MixedMaskGenerator | |
class MakeManyMasksWrapper: | |
def __init__(self, impl, variants_n=2): | |
self.impl = impl | |
self.variants_n = variants_n | |
def get_masks(self, img): | |
img = np.transpose(np.array(img), (2, 0, 1)) | |
return [self.impl(img)[0] for _ in range(self.variants_n)] | |
def process_images(src_images, indir, outdir, config): | |
if config.generator_kind == 'segmentation': | |
mask_generator = SegmentationMask(**config.mask_generator_kwargs) | |
elif config.generator_kind == 'random': | |
variants_n = config.mask_generator_kwargs.pop('variants_n', 2) | |
mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**config.mask_generator_kwargs), | |
variants_n=variants_n) | |
else: | |
raise ValueError(f'Unexpected generator kind: {config.generator_kind}') | |
max_tamper_area = config.get('max_tamper_area', 1) | |
for infile in src_images: | |
try: | |
file_relpath = infile[len(indir):] | |
img_outpath = os.path.join(outdir, file_relpath) | |
os.makedirs(os.path.dirname(img_outpath), exist_ok=True) | |
image = Image.open(infile).convert('RGB') | |
# scale input image to output resolution and filter smaller images | |
if min(image.size) < config.cropping.out_min_size: | |
handle_small_mode = SmallMode(config.cropping.handle_small_mode) | |
if handle_small_mode == SmallMode.DROP: | |
continue | |
elif handle_small_mode == SmallMode.UPSCALE: | |
factor = config.cropping.out_min_size / min(image.size) | |
out_size = (np.array(image.size) * factor).round().astype('uint32') | |
image = image.resize(out_size, resample=Image.BICUBIC) | |
else: | |
factor = config.cropping.out_min_size / min(image.size) | |
out_size = (np.array(image.size) * factor).round().astype('uint32') | |
image = image.resize(out_size, resample=Image.BICUBIC) | |
# generate and select masks | |
src_masks = mask_generator.get_masks(image) | |
filtered_image_mask_pairs = [] | |
for cur_mask in src_masks: | |
if config.cropping.out_square_crop: | |
(crop_left, | |
crop_top, | |
crop_right, | |
crop_bottom) = propose_random_square_crop(cur_mask, | |
min_overlap=config.cropping.crop_min_overlap) | |
cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right] | |
cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom)) | |
else: | |
cur_image = image | |
if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area: | |
continue | |
filtered_image_mask_pairs.append((cur_image, cur_mask)) | |
mask_indices = np.random.choice(len(filtered_image_mask_pairs), | |
size=min(len(filtered_image_mask_pairs), config.max_masks_per_image), | |
replace=False) | |
# crop masks; save masks together with input image | |
mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0]) | |
for i, idx in enumerate(mask_indices): | |
cur_image, cur_mask = filtered_image_mask_pairs[idx] | |
cur_basename = mask_basename + f'_crop{i:03d}' | |
Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'), | |
mode='L').save(cur_basename + f'_mask{i:03d}.png') | |
cur_image.save(cur_basename + '.png') | |
except KeyboardInterrupt: | |
return | |
except Exception as ex: | |
print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}') | |
def main(args): | |
if not args.indir.endswith('/'): | |
args.indir += '/' | |
os.makedirs(args.outdir, exist_ok=True) | |
config = load_yaml(args.config) | |
in_files = list(glob.glob(os.path.join(args.indir, '**', f'*.{args.ext}'), recursive=True)) | |
if args.n_jobs == 0: | |
process_images(in_files, args.indir, args.outdir, config) | |
else: | |
in_files_n = len(in_files) | |
chunk_size = in_files_n // args.n_jobs + (1 if in_files_n % args.n_jobs > 0 else 0) | |
Parallel(n_jobs=args.n_jobs)( | |
delayed(process_images)(in_files[start:start+chunk_size], args.indir, args.outdir, config) | |
for start in range(0, len(in_files), chunk_size) | |
) | |
if __name__ == '__main__': | |
import argparse | |
aparser = argparse.ArgumentParser() | |
aparser.add_argument('config', type=str, help='Path to config for dataset generation') | |
aparser.add_argument('indir', type=str, help='Path to folder with images') | |
aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to') | |
aparser.add_argument('--n-jobs', type=int, default=0, help='How many processes to use') | |
aparser.add_argument('--ext', type=str, default='jpg', help='Input image extension') | |
main(aparser.parse_args()) | |