Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Example command: | |
# ./bin/predict.py \ | |
# model.path=<path to checkpoint, prepared by make_checkpoint.py> \ | |
# indir=<path to input data> \ | |
# outdir=<where to store predicts> | |
import logging | |
import os | |
import sys | |
import traceback | |
from saicinpainting.evaluation.utils import move_to_device | |
os.environ['OMP_NUM_THREADS'] = '1' | |
os.environ['OPENBLAS_NUM_THREADS'] = '1' | |
os.environ['MKL_NUM_THREADS'] = '1' | |
os.environ['VECLIB_MAXIMUM_THREADS'] = '1' | |
os.environ['NUMEXPR_NUM_THREADS'] = '1' | |
import cv2 | |
import hydra | |
import numpy as np | |
import torch | |
import tqdm | |
import yaml | |
from omegaconf import OmegaConf | |
from torch.utils.data._utils.collate import default_collate | |
from saicinpainting.training.data.datasets import make_default_val_dataset | |
from saicinpainting.training.trainers import load_checkpoint | |
from saicinpainting.utils import register_debug_signal_handlers | |
LOGGER = logging.getLogger(__name__) | |
def main(predict_config: OmegaConf): | |
try: | |
register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log | |
device = torch.device(predict_config.device) | |
train_config_path = os.path.join(predict_config.model.path, 'config.yaml') | |
with open(train_config_path, 'r') as f: | |
train_config = OmegaConf.create(yaml.safe_load(f)) | |
train_config.training_model.predict_only = True | |
out_ext = predict_config.get('out_ext', '.png') | |
checkpoint_path = os.path.join(predict_config.model.path, | |
'models', | |
predict_config.model.checkpoint) | |
model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') | |
model.freeze() | |
model.to(device) | |
if not predict_config.indir.endswith('/'): | |
predict_config.indir += '/' | |
dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) | |
with torch.no_grad(): | |
for img_i in tqdm.trange(len(dataset)): | |
mask_fname = dataset.mask_filenames[img_i] | |
cur_out_fname = os.path.join( | |
predict_config.outdir, | |
os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext | |
) | |
os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) | |
batch = move_to_device(default_collate([dataset[img_i]]), device) | |
batch['mask'] = (batch['mask'] > 0) * 1 | |
batch = model(batch) | |
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() | |
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') | |
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) | |
cv2.imwrite(cur_out_fname, cur_res) | |
except KeyboardInterrupt: | |
LOGGER.warning('Interrupted by user') | |
except Exception as ex: | |
LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') | |
sys.exit(1) | |
if __name__ == '__main__': | |
main() | |