riccorl's picture
first commit
626eca0
raw
history blame
No virus
16 kB
import collections
import contextlib
import logging
from typing import Any, Dict, Iterator, List
import torch
import transformers as tr
from lightning_fabric.utilities import move_data_to_device
from torch.utils.data import DataLoader, IterableDataset
from tqdm import tqdm
from relik.common.log import get_console_logger, get_logger
from relik.common.utils import get_callable_from_string
from relik.reader.data.relik_reader_sample import RelikReaderSample
from relik.reader.pytorch_modules.base import RelikReaderBase
from relik.reader.utils.special_symbols import get_special_symbols
from relik.retriever.pytorch_modules import PRECISION_MAP
console_logger = get_console_logger()
logger = get_logger(__name__, level=logging.INFO)
class RelikReaderForSpanExtraction(RelikReaderBase):
"""
A class for the RelikReader model for span extraction.
Args:
transformer_model (:obj:`str` or :obj:`transformers.PreTrainedModel` or :obj:`None`, `optional`):
The transformer model to use. If `None`, the default model is used.
additional_special_symbols (:obj:`int`, `optional`, defaults to 0):
The number of additional special symbols to add to the tokenizer.
num_layers (:obj:`int`, `optional`):
The number of layers to use. If `None`, all layers are used.
activation (:obj:`str`, `optional`, defaults to "gelu"):
The activation function to use.
linears_hidden_size (:obj:`int`, `optional`, defaults to 512):
The hidden size of the linears.
use_last_k_layers (:obj:`int`, `optional`, defaults to 1):
The number of last layers to use.
training (:obj:`bool`, `optional`, defaults to False):
Whether the model is in training mode.
device (:obj:`str` or :obj:`torch.device` or :obj:`None`, `optional`):
The device to use. If `None`, the default device is used.
tokenizer (:obj:`str` or :obj:`transformers.PreTrainedTokenizer` or :obj:`None`, `optional`):
The tokenizer to use. If `None`, the default tokenizer is used.
dataset (:obj:`IterableDataset` or :obj:`str` or :obj:`None`, `optional`):
The dataset to use. If `None`, the default dataset is used.
dataset_kwargs (:obj:`Dict[str, Any]` or :obj:`None`, `optional`):
The keyword arguments to pass to the dataset class.
default_reader_class (:obj:`str` or :obj:`transformers.PreTrainedModel` or :obj:`None`, `optional`):
The default reader class to use. If `None`, the default reader class is used.
**kwargs:
Keyword arguments.
"""
default_reader_class: str = (
"relik.reader.pytorch_modules.hf.modeling_relik.RelikReaderSpanModel"
)
default_data_class: str = "relik.reader.data.relik_reader_data.RelikDataset"
def __init__(
self,
transformer_model: str | tr.PreTrainedModel | None = None,
additional_special_symbols: int = 0,
num_layers: int | None = None,
activation: str = "gelu",
linears_hidden_size: int | None = 512,
use_last_k_layers: int = 1,
training: bool = False,
device: str | torch.device | None = None,
tokenizer: str | tr.PreTrainedTokenizer | None = None,
dataset: IterableDataset | str | None = None,
dataset_kwargs: Dict[str, Any] | None = None,
default_reader_class: tr.PreTrainedModel | str | None = None,
**kwargs,
):
super().__init__(
transformer_model=transformer_model,
additional_special_symbols=additional_special_symbols,
num_layers=num_layers,
activation=activation,
linears_hidden_size=linears_hidden_size,
use_last_k_layers=use_last_k_layers,
training=training,
device=device,
tokenizer=tokenizer,
dataset=dataset,
default_reader_class=default_reader_class,
**kwargs,
)
# and instantiate the dataset class
self.dataset = dataset
if self.dataset is None:
default_data_kwargs = dict(
dataset_path=None,
materialize_samples=False,
transformer_model=self.tokenizer,
special_symbols=get_special_symbols(
self.relik_reader_model.config.additional_special_symbols
),
for_inference=True,
)
# merge the default data kwargs with the ones passed to the model
default_data_kwargs.update(dataset_kwargs or {})
self.dataset = get_callable_from_string(self.default_data_class)(
**default_data_kwargs
)
@torch.no_grad()
@torch.inference_mode()
def _read(
self,
samples: List[RelikReaderSample] | None = None,
input_ids: torch.Tensor | None = None,
attention_mask: torch.Tensor | None = None,
token_type_ids: torch.Tensor | None = None,
prediction_mask: torch.Tensor | None = None,
special_symbols_mask: torch.Tensor | None = None,
max_length: int = 1000,
max_batch_size: int = 128,
token_batch_size: int = 2048,
precision: str = 32,
annotation_type: str = "char",
progress_bar: bool = False,
*args: object,
**kwargs: object,
) -> List[RelikReaderSample] | List[List[RelikReaderSample]]:
"""
A wrapper around the forward method that returns the predicted labels for each sample.
Args:
samples (:obj:`List[RelikReaderSample]`, `optional`):
The samples to read. If provided, `text` and `candidates` are ignored.
input_ids (:obj:`torch.Tensor`, `optional`):
The input ids of the text. If `samples` is provided, this is ignored.
attention_mask (:obj:`torch.Tensor`, `optional`):
The attention mask of the text. If `samples` is provided, this is ignored.
token_type_ids (:obj:`torch.Tensor`, `optional`):
The token type ids of the text. If `samples` is provided, this is ignored.
prediction_mask (:obj:`torch.Tensor`, `optional`):
The prediction mask of the text. If `samples` is provided, this is ignored.
special_symbols_mask (:obj:`torch.Tensor`, `optional`):
The special symbols mask of the text. If `samples` is provided, this is ignored.
max_length (:obj:`int`, `optional`, defaults to 1000):
The maximum length of the text.
max_batch_size (:obj:`int`, `optional`, defaults to 128):
The maximum batch size.
token_batch_size (:obj:`int`, `optional`):
The token batch size.
progress_bar (:obj:`bool`, `optional`, defaults to False):
Whether to show a progress bar.
precision (:obj:`str`, `optional`, defaults to 32):
The precision to use for the model.
annotation_type (:obj:`str`, `optional`, defaults to "char"):
The annotation type to use. It can be either "char", "token" or "word".
*args:
Positional arguments.
**kwargs:
Keyword arguments.
Returns:
:obj:`List[RelikReaderSample]` or :obj:`List[List[RelikReaderSample]]`:
The predicted labels for each sample.
"""
precision = precision or self.precision
if samples is not None:
def _read_iterator():
def samples_it():
for i, sample in enumerate(samples):
assert sample._mixin_prediction_position is None
sample._mixin_prediction_position = i
yield sample
next_prediction_position = 0
position2predicted_sample = {}
# instantiate dataset
if self.dataset is None:
raise ValueError(
"You need to pass a dataset to the model in order to predict"
)
self.dataset.samples = samples_it()
self.dataset.model_max_length = max_length
self.dataset.tokens_per_batch = token_batch_size
self.dataset.max_batch_size = max_batch_size
# instantiate dataloader
iterator = DataLoader(
self.dataset, batch_size=None, num_workers=0, shuffle=False
)
if progress_bar:
iterator = tqdm(iterator, desc="Predicting with RelikReader")
# fucking autocast only wants pure strings like 'cpu' or 'cuda'
# we need to convert the model device to that
device_type_for_autocast = str(self.device).split(":")[0]
# autocast doesn't work with CPU and stuff different from bfloat16
autocast_mngr = (
contextlib.nullcontext()
if device_type_for_autocast == "cpu"
else (
torch.autocast(
device_type=device_type_for_autocast,
dtype=PRECISION_MAP[precision],
)
)
)
with autocast_mngr:
for batch in iterator:
batch = move_data_to_device(batch, self.device)
batch_out = self._batch_predict(**batch)
for sample in batch_out:
if (
sample._mixin_prediction_position
>= next_prediction_position
):
position2predicted_sample[
sample._mixin_prediction_position
] = sample
# yield
while next_prediction_position in position2predicted_sample:
yield position2predicted_sample[next_prediction_position]
del position2predicted_sample[next_prediction_position]
next_prediction_position += 1
outputs = list(_read_iterator())
for sample in outputs:
self.dataset.merge_patches_predictions(sample)
self.dataset.convert_tokens_to_char_annotations(sample)
else:
outputs = list(
self._batch_predict(
input_ids,
attention_mask,
token_type_ids,
prediction_mask,
special_symbols_mask,
*args,
**kwargs,
)
)
return outputs
def _batch_predict(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: torch.Tensor | None = None,
prediction_mask: torch.Tensor | None = None,
special_symbols_mask: torch.Tensor | None = None,
sample: List[RelikReaderSample] | None = None,
top_k: int = 5, # the amount of top-k most probable entities to predict
*args,
**kwargs,
) -> Iterator[RelikReaderSample]:
"""
A wrapper around the forward method that returns the predicted labels for each sample.
It also adds the predicted labels to the samples.
Args:
input_ids (:obj:`torch.Tensor`):
The input ids of the text.
attention_mask (:obj:`torch.Tensor`):
The attention mask of the text.
token_type_ids (:obj:`torch.Tensor`, `optional`):
The token type ids of the text.
prediction_mask (:obj:`torch.Tensor`, `optional`):
The prediction mask of the text.
special_symbols_mask (:obj:`torch.Tensor`, `optional`):
The special symbols mask of the text.
sample (:obj:`List[RelikReaderSample]`, `optional`):
The samples to read. If provided, `text` and `candidates` are ignored.
top_k (:obj:`int`, `optional`, defaults to 5):
The amount of top-k most probable entities to predict.
*args:
Positional arguments.
**kwargs:
Keyword arguments.
Returns:
The predicted labels for each sample.
"""
forward_output = self.forward(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
prediction_mask=prediction_mask,
special_symbols_mask=special_symbols_mask,
)
ned_start_predictions = forward_output["ned_start_predictions"].cpu().numpy()
ned_end_predictions = forward_output["ned_end_predictions"].cpu().numpy()
ed_predictions = forward_output["ed_predictions"].cpu().numpy()
ed_probabilities = forward_output["ed_probabilities"].cpu().numpy()
batch_predictable_candidates = kwargs["predictable_candidates"]
patch_offset = kwargs["patch_offset"]
for ts, ne_sp, ne_ep, edp, edpr, pred_cands, po in zip(
sample,
ned_start_predictions,
ned_end_predictions,
ed_predictions,
ed_probabilities,
batch_predictable_candidates,
patch_offset,
):
ne_start_indices = [ti for ti, c in enumerate(ne_sp[1:]) if c > 0]
ne_end_indices = [ti for ti, c in enumerate(ne_ep[1:]) if c > 0]
final_class2predicted_spans = collections.defaultdict(list)
spans2predicted_probabilities = dict()
for start_token_index, end_token_index in zip(
ne_start_indices, ne_end_indices
):
# predicted candidate
token_class = edp[start_token_index + 1] - 1
predicted_candidate_title = pred_cands[token_class]
final_class2predicted_spans[predicted_candidate_title].append(
[start_token_index, end_token_index]
)
# candidates probabilities
classes_probabilities = edpr[start_token_index + 1]
classes_probabilities_best_indices = classes_probabilities.argsort()[
::-1
]
titles_2_probs = []
top_k = (
min(
top_k,
len(classes_probabilities_best_indices),
)
if top_k != -1
else len(classes_probabilities_best_indices)
)
for i in range(top_k):
titles_2_probs.append(
(
pred_cands[classes_probabilities_best_indices[i] - 1],
classes_probabilities[
classes_probabilities_best_indices[i]
].item(),
)
)
spans2predicted_probabilities[
(start_token_index, end_token_index)
] = titles_2_probs
if "patches" not in ts._d:
ts._d["patches"] = dict()
ts._d["patches"][po] = dict()
sample_patch = ts._d["patches"][po]
sample_patch["predicted_window_labels"] = final_class2predicted_spans
sample_patch["span_title_probabilities"] = spans2predicted_probabilities
# additional info
sample_patch["predictable_candidates"] = pred_cands
yield ts