Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Union | |
| import torch | |
| from PIL import Image | |
| from torchvision import transforms as tfms | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DiffusionPipeline, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| UNet2DConditionModel, | |
| ) | |
| class MagicMixPipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], | |
| ): | |
| super().__init__() | |
| self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) | |
| # convert PIL image to latents | |
| def encode(self, img): | |
| with torch.no_grad(): | |
| latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1) | |
| latent = 0.18215 * latent.latent_dist.sample() | |
| return latent | |
| # convert latents to PIL image | |
| def decode(self, latent): | |
| latent = (1 / 0.18215) * latent | |
| with torch.no_grad(): | |
| img = self.vae.decode(latent).sample | |
| img = (img / 2 + 0.5).clamp(0, 1) | |
| img = img.detach().cpu().permute(0, 2, 3, 1).numpy() | |
| img = (img * 255).round().astype("uint8") | |
| return Image.fromarray(img[0]) | |
| # convert prompt into text embeddings, also unconditional embeddings | |
| def prep_text(self, prompt): | |
| text_input = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
| uncond_input = self.tokenizer( | |
| "", | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
| return torch.cat([uncond_embedding, text_embedding]) | |
| def __call__( | |
| self, | |
| img: Image.Image, | |
| prompt: str, | |
| kmin: float = 0.3, | |
| kmax: float = 0.6, | |
| mix_factor: float = 0.5, | |
| seed: int = 42, | |
| steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| ) -> Image.Image: | |
| tmin = steps - int(kmin * steps) | |
| tmax = steps - int(kmax * steps) | |
| text_embeddings = self.prep_text(prompt) | |
| self.scheduler.set_timesteps(steps) | |
| width, height = img.size | |
| encoded = self.encode(img) | |
| torch.manual_seed(seed) | |
| noise = torch.randn( | |
| (1, self.unet.in_channels, height // 8, width // 8), | |
| ).to(self.device) | |
| latents = self.scheduler.add_noise( | |
| encoded, | |
| noise, | |
| timesteps=self.scheduler.timesteps[tmax], | |
| ) | |
| input = torch.cat([latents] * 2) | |
| input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax]) | |
| with torch.no_grad(): | |
| pred = self.unet( | |
| input, | |
| self.scheduler.timesteps[tmax], | |
| encoder_hidden_states=text_embeddings, | |
| ).sample | |
| pred_uncond, pred_text = pred.chunk(2) | |
| pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) | |
| latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample | |
| for i, t in enumerate(tqdm(self.scheduler.timesteps)): | |
| if i > tmax: | |
| if i < tmin: # layout generation phase | |
| orig_latents = self.scheduler.add_noise( | |
| encoded, | |
| noise, | |
| timesteps=t, | |
| ) | |
| input = (mix_factor * latents) + ( | |
| 1 - mix_factor | |
| ) * orig_latents # interpolating between layout noise and conditionally generated noise to preserve layout sematics | |
| input = torch.cat([input] * 2) | |
| else: # content generation phase | |
| input = torch.cat([latents] * 2) | |
| input = self.scheduler.scale_model_input(input, t) | |
| with torch.no_grad(): | |
| pred = self.unet( | |
| input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| ).sample | |
| pred_uncond, pred_text = pred.chunk(2) | |
| pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) | |
| latents = self.scheduler.step(pred, t, latents).prev_sample | |
| return self.decode(latents) | |