Carlexx commited on
Commit
c7a9e40
Β·
verified Β·
1 Parent(s): a5af709

Delete ai_studio_code (82).py

Browse files
Files changed (1) hide show
  1. ai_studio_code (82).py +0 -284
ai_studio_code (82).py DELETED
@@ -1,284 +0,0 @@
1
- # Euia-AducSdr: Uma implementaΓ§Γ£o aberta e funcional da arquitetura ADUC-SDR para geraΓ§Γ£o de vΓ­deo coerente.
2
- # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
- # ... (cabeΓ§alho completo)
4
-
5
- # --- app.py (NOVIM-5.5: O Fator Humano) ---
6
-
7
- # --- Ato 1: A ConvocaΓ§Γ£o da Orquestra (ImportaΓ§Γ΅es) ---
8
- import gradio as gr
9
- import torch
10
- import os
11
- import yaml
12
- from PIL import Image, ImageOps, ExifTags
13
- import shutil
14
- import gc
15
- import subprocess
16
- import google.generativeai as genai
17
- import numpy as np
18
- import imageio
19
- from pathlib import Path
20
- import huggingface_hub
21
- import json
22
- import time
23
-
24
- from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
25
- from dreamo_helpers import dreamo_generator_singleton
26
-
27
- # --- Ato 2: A PreparaΓ§Γ£o do Palco (ConfiguraΓ§Γ΅es) ---
28
- config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
29
- with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
30
-
31
- LTX_REPO = "Lightricks/LTX-Video"
32
- models_dir = "downloaded_models_gradio"
33
- Path(models_dir).mkdir(parents=True, exist_ok=True)
34
- WORKSPACE_DIR = "aduc_workspace"
35
- GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
36
-
37
- VIDEO_FPS = 24
38
- TARGET_RESOLUTION = 420
39
- MAX_KEYFRAMES_UI = 10 # Limite de abas de keyframe na UI
40
-
41
- print("Criando pipelines LTX na CPU (estado de repouso)...")
42
- distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
43
- pipeline_instance = create_ltx_video_pipeline(
44
- ckpt_path=distilled_model_actual_path,
45
- precision=PIPELINE_CONFIG_YAML["precision"],
46
- text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
47
- sampler=PIPELINE_CONFIG_YAML["sampler"],
48
- device='cpu'
49
- )
50
- print("Modelos LTX prontos (na CPU).")
51
-
52
-
53
- # --- Ato 3: As Partituras dos MΓΊsicos (FunΓ§Γ΅es de GeraΓ§Γ£o e AnΓ‘lise) ---
54
-
55
- def robust_json_parser(raw_text: str) -> dict:
56
- try:
57
- start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
58
- if start_index != -1 and end_index != -1 and end_index > start_index:
59
- json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str)
60
- else: raise ValueError("Nenhum objeto JSON vΓ‘lido encontrado na resposta da IA.")
61
- except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
62
-
63
- def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
64
- if not initial_image_path: raise gr.Error("Por favor, forneΓ§a uma imagem de referΓͺncia inicial.")
65
- if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini nΓ£o configurada!")
66
- prompt_file = "prompts/unified_storyboard_prompt.txt"
67
- with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
68
- director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata="")
69
- genai.configure(api_key=GEMINI_API_KEY)
70
- model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path)
71
- response = model.generate_content([director_prompt, img])
72
- try:
73
- storyboard_data = robust_json_parser(response.text)
74
- storyboard = storyboard_data.get("scene_storyboard", [])
75
- if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA nΓ£o gerou o nΓΊmero correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
76
- return storyboard
77
- except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou: {e}. Resposta: {response.text}")
78
-
79
- def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
80
- genai.configure(api_key=GEMINI_API_KEY)
81
- prompt_file = "prompts/img2img_evolution_prompt.txt"
82
- with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
83
- director_prompt = template.format(target_scene_description=target_scene_description)
84
- model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path)
85
- response = model.generate_content([director_prompt, "Previous Image:", img])
86
- return response.text.strip().replace("\"", "")
87
-
88
- def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()):
89
- if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
90
- initial_ref_image_path = ref_images_tasks[0]['image']
91
- if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referΓͺncia principal (Γ  esquerda) Γ© obrigatΓ³ria.")
92
- log_history = ""; keyframe_paths = []
93
- try:
94
- pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
95
- dreamo_generator_singleton.to_gpu()
96
- with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
97
- current_ref_image_path = initial_ref_image_path
98
- for i, scene_description in enumerate(storyboard):
99
- progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
100
- log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
101
- dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
102
- reference_items = []
103
- for item in ref_images_tasks:
104
- if item['image'] and os.path.exists(item['image']):
105
- reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']})
106
- log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referΓͺncias visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n"
107
- yield {keyframe_log_output: gr.update(value=log_history)}
108
- output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
109
- image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height)
110
- image.save(output_path)
111
- keyframe_paths.append(output_path); current_ref_image_path = output_path
112
- except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
113
- finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache()
114
- log_history += "\nPintura de todos os keyframes concluΓ­da.\n"
115
- yield {keyframe_log_output: gr.update(value=log_history), keyframe_images_state: keyframe_paths}
116
-
117
- def get_motion_prompt(user_prompt, start_path, end_path, scene_desc):
118
- return f"A smooth, cinematic transition from the start image towards the end image, focusing on: {scene_desc}"
119
-
120
- def run_video_production(
121
- video_duration_seconds, video_fps, end_cond_strength,
122
- prompt_geral, keyframe_paths_from_ui, scene_storyboard, cfg,
123
- progress=gr.Progress()
124
- ):
125
- valid_keyframes = [p for p in keyframe_paths_from_ui if p is not None and os.path.exists(p)]
126
- if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("SΓ£o necessΓ‘rios pelo menos 2 keyframes vΓ‘lidos para produzir um vΓ­deo.")
127
-
128
- log_history = "\n--- FASE 3: Iniciando ProduΓ§Γ£o...\n"
129
- yield {production_log_output: log_history, video_gallery_glitch: []}
130
-
131
- video_total_frames = int(video_duration_seconds * video_fps)
132
- seed = int(time.time())
133
- try:
134
- pipeline_instance.to('cuda')
135
- video_fragments = []; kinetic_memory_path = valid_keyframes[0]
136
- with Image.open(kinetic_memory_path) as img: width, height = img.size
137
-
138
- for i in range(len(valid_keyframes) - 1):
139
- fragment_num = i + 1
140
- progress(i / (len(valid_keyframes) - 1), desc=f"Filmando Fragmento {fragment_num}")
141
-
142
- start_path = kinetic_memory_path
143
- destination_path = valid_keyframes[i+1]
144
-
145
- motion_prompt = get_motion_prompt(prompt_geral, start_path, destination_path, scene_storyboard[i])
146
-
147
- conditioning_items_data = [(start_path, 0, 1.0), (destination_path, video_total_frames - 1, end_cond_strength)]
148
-
149
- fragment_path, _ = run_ltx_animation(
150
- current_fragment_index=fragment_num, motion_prompt=motion_prompt,
151
- conditioning_items_data=conditioning_items_data, width=width, height=height,
152
- seed=seed, cfg=cfg, progress=progress,
153
- video_total_frames=video_total_frames, video_fps=video_fps, use_attention_slicing=True, num_inference_steps=30
154
- )
155
-
156
- video_fragments.append(fragment_path)
157
- eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.png")
158
- kinetic_memory_path = extract_last_frame_as_image(fragment_path, eco_output_path)
159
-
160
- log_history += f"Fragmento {fragment_num} concluΓ­do.\n"
161
- yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
162
-
163
- yield {production_log_output: log_history + "\nProduΓ§Γ£o concluΓ­da.", video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
164
- finally:
165
- pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
166
-
167
- def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
168
- if not fragment_paths: raise gr.Error("Nenhum fragmento de vΓ­deo para concatenar.")
169
- progress(0.5, desc="Montando a obra-prima final...");
170
- try:
171
- list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
172
- with open(list_file_path, "w") as f:
173
- for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n")
174
- subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
175
- progress(1.0, desc="Montagem concluΓ­da!")
176
- return final_output_path
177
- except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenaΓ§Γ£o final: {e.stderr}")
178
-
179
- # ... (Outras funΓ§Γ΅es utilitΓ‘rias como process_image_to_square, run_ltx_animation, etc. aqui)
180
-
181
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
182
- gr.Markdown("# NOVIM-5.5 (O Fator Humano)\n*By Carlex & Gemini & DreamO*")
183
- if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
184
- os.makedirs(WORKSPACE_DIR)
185
-
186
- scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
187
- prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
188
-
189
- gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
190
- with gr.Row():
191
- with gr.Column(scale=1):
192
- prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
193
- num_fragments_input = gr.Slider(2, MAX_KEYFRAMES_UI, 4, step=1, label="NΓΊmero de Atos (Keyframes)")
194
- image_input = gr.Image(type="filepath", label=f"Imagem de ReferΓͺncia Principal (serΓ‘ {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
195
- director_button = gr.Button("▢️ 1. Gerar Roteiro", variant="primary")
196
- with gr.Column(scale=2):
197
- storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
198
-
199
- gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
200
- with gr.Row():
201
- with gr.Column(scale=2):
202
- with gr.Row():
203
- ref1_image = gr.Image(label="ReferΓͺncia Principal (ConteΓΊdo/ID)", type="filepath")
204
- ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal")
205
- with gr.Row():
206
- ref2_image = gr.Image(label="ReferΓͺncia SecundΓ‘ria (Opcional)", type="filepath")
207
- ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. SecundΓ‘ria")
208
- photographer_button = gr.Button("▢️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
209
- keyframe_log_output = gr.Textbox(label="DiΓ‘rio de Bordo do Pintor", lines=10, interactive=False)
210
- with gr.Column(scale=1):
211
- gr.Markdown("### Painel de EdiΓ§Γ£o de Keyframes")
212
- keyframe_ui_slots = []
213
- keyframe_ui_tabs_visibility = []
214
- with gr.Tabs() as keyframe_tabs:
215
- for i in range(MAX_KEYFRAMES_UI):
216
- with gr.TabItem(f"Keyframe {i+1}", visible=(i<2)) as keyframe_tab:
217
- keyframe_ui_slots.append(gr.Image(label=f"ConteΓΊdo do Keyframe {i+1}", type="filepath", interactive=True))
218
- keyframe_ui_tabs_visibility.append(keyframe_tab)
219
-
220
- gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & CΓ’mera)")
221
- with gr.Row():
222
- with gr.Column(scale=1):
223
- cfg_slider = gr.Slider(1.0, 10.0, 7.5, step=0.1, label="CFG")
224
- end_cond_strength_slider = gr.Slider(label="ForΓ§a de ConvergΓͺncia do Destino", minimum=0.1, maximum=1.0, value=1.0, step=0.05)
225
- with gr.Accordion("Controles AvanΓ§ados de Timing", open=False):
226
- video_duration_slider = gr.Slider(label="DuraΓ§Γ£o da Cena (segundos)", minimum=2.0, maximum=10.0, value=4.0, step=0.5)
227
- video_fps_slider = gr.Slider(label="FPS do VΓ­deo", minimum=12, maximum=36, value=VIDEO_FPS, step=1)
228
- animator_button = gr.Button("▢️ 3. Produzir Cenas (Handoff CinΓ©tico)", variant="primary")
229
- production_log_output = gr.Textbox(label="DiΓ‘rio de Bordo da ProduΓ§Γ£o", lines=10, interactive=False)
230
- with gr.Column(scale=1):
231
- video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video")
232
-
233
- gr.Markdown(f"--- \n ## ETAPA 4: PΓ“S-PRODUÇÃO (Editor)")
234
- editor_button = gr.Button("▢️ 4. Montar VΓ­deo Final", variant="primary")
235
- final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
236
-
237
- def process_and_update_storyboard(num_fragments, prompt, image_path):
238
- processed_path = process_image_to_square(image_path)
239
- if not processed_path: raise gr.Error("A imagem de referΓͺncia Γ© invΓ‘lida.")
240
- storyboard = run_storyboard_generation(num_fragments, prompt, processed_path)
241
- tab_updates = [gr.update(visible=(i < num_fragments)) for i in range(MAX_KEYFRAMES_UI)]
242
- return storyboard, prompt, processed_path, storyboard, processed_path, *tab_updates
243
-
244
- director_button.click(
245
- fn=process_and_update_storyboard,
246
- inputs=[num_fragments_input, prompt_input, image_input],
247
- outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state, storyboard_to_show, ref1_image] + keyframe_ui_tabs_visibility
248
- )
249
-
250
- def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()):
251
- ref_data = [{'image': ref1_img, 'task': ref1_tsk}, {'image': ref2_img, 'task': ref2_tsk}]
252
- final_update = {}
253
- for update in run_keyframe_generation(storyboard, ref_data, progress):
254
- final_update = update
255
- final_paths = final_update.get('keyframe_images_state', [])
256
- updates = [gr.update(value=final_paths[i] if i < len(final_paths) else None) for i in range(MAX_KEYFRAMES_UI)]
257
- return final_update.get('keyframe_log_output', ''), final_paths, *updates
258
-
259
- photographer_button.click(
260
- fn=run_keyframe_generation_wrapper,
261
- inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task],
262
- outputs=[keyframe_log_output, keyframe_images_state] + keyframe_ui_slots
263
- )
264
-
265
- # Coleta os inputs para a produΓ§Γ£o de vΓ­deo, incluindo os keyframes das abas
266
- video_prod_inputs = [
267
- video_duration_slider, video_fps_slider, end_cond_strength_slider,
268
- prompt_geral_state, scene_storyboard_state, cfg_slider
269
- ] + keyframe_ui_slots
270
-
271
- animator_button.click(
272
- fn=lambda *args: run_video_production(*args),
273
- inputs=video_prod_inputs,
274
- outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
275
- )
276
-
277
- editor_button.click(
278
- fn=concatenate_and_trim_masterpiece,
279
- inputs=[fragment_list_state],
280
- outputs=[final_video_output]
281
- )
282
-
283
- if __name__ == "__main__":
284
- demo.queue().launch(server_name="0.0.0.0", share=True)