Spaces:
Runtime error
Runtime error
Delete app5.5.6.py
Browse files- app5.5.6.py +0 -423
app5.5.6.py
DELETED
|
@@ -1,423 +0,0 @@
|
|
| 1 |
-
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
|
| 2 |
-
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 3 |
-
#
|
| 4 |
-
# Contato:
|
| 5 |
-
# Carlos Rodrigues dos Santos
|
| 6 |
-
# carlex22@gmail.com
|
| 7 |
-
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
| 8 |
-
#
|
| 9 |
-
# Repositórios e Projetos Relacionados:
|
| 10 |
-
# GitHub: https://github.com/carlex22/Aduc-sdr
|
| 11 |
-
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
|
| 12 |
-
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
|
| 13 |
-
#
|
| 14 |
-
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
|
| 15 |
-
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
|
| 16 |
-
# Free Software Foundation, seja a versão 3 da Licença, ou
|
| 17 |
-
# (a seu critério) qualquer versão posterior.
|
| 18 |
-
#
|
| 19 |
-
# Este programa é distribuído na esperança de que seja útil,
|
| 20 |
-
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
|
| 21 |
-
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
|
| 22 |
-
# Licença Pública Geral Affero da GNU para mais detalhes.
|
| 23 |
-
#
|
| 24 |
-
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
|
| 25 |
-
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
|
| 26 |
-
|
| 27 |
-
# --- app.py (NOVINHO-5.3-DEJAVU: Lógica de Handoff com "Eco Fantasma") ---
|
| 28 |
-
|
| 29 |
-
# --- Ato 1: A Convocação da Orquestra (Importações) ---
|
| 30 |
-
import gradio as gr
|
| 31 |
-
import torch
|
| 32 |
-
import os
|
| 33 |
-
import yaml
|
| 34 |
-
from PIL import Image, ImageOps, ExifTags
|
| 35 |
-
import shutil
|
| 36 |
-
import gc
|
| 37 |
-
import subprocess
|
| 38 |
-
import google.generativeai as genai
|
| 39 |
-
import numpy as np
|
| 40 |
-
import imageio
|
| 41 |
-
from pathlib import Path
|
| 42 |
-
import huggingface_hub
|
| 43 |
-
import json
|
| 44 |
-
import time
|
| 45 |
-
|
| 46 |
-
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
|
| 47 |
-
from dreamo_helpers import dreamo_generator_singleton
|
| 48 |
-
|
| 49 |
-
# --- Ato 2: A Preparação do Palco (Configurações) ---
|
| 50 |
-
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
| 51 |
-
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
| 52 |
-
|
| 53 |
-
LTX_REPO = "Lightricks/LTX-Video"
|
| 54 |
-
models_dir = "downloaded_models_gradio"
|
| 55 |
-
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
| 56 |
-
WORKSPACE_DIR = "aduc_workspace"
|
| 57 |
-
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
| 58 |
-
|
| 59 |
-
# Valores padrão que agora podem ser sobrescritos pela UI
|
| 60 |
-
VIDEO_FPS_DEFAULT = 24
|
| 61 |
-
VIDEO_DURATION_SECONDS_DEFAULT = 8.0
|
| 62 |
-
TARGET_RESOLUTION = 420
|
| 63 |
-
|
| 64 |
-
print("Criando pipelines LTX na CPU (estado de repouso)...")
|
| 65 |
-
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
| 66 |
-
pipeline_instance = create_ltx_video_pipeline(
|
| 67 |
-
ckpt_path=distilled_model_actual_path,
|
| 68 |
-
precision=PIPELINE_CONFIG_YAML["precision"],
|
| 69 |
-
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
| 70 |
-
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
| 71 |
-
device='cpu'
|
| 72 |
-
)
|
| 73 |
-
print("Modelos LTX prontos (na CPU).")
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
# --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
|
| 77 |
-
|
| 78 |
-
# --- Funções da ETAPA 1 (Roteiro) ---
|
| 79 |
-
def robust_json_parser(raw_text: str) -> dict:
|
| 80 |
-
try:
|
| 81 |
-
start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
|
| 82 |
-
if start_index != -1 and end_index != -1 and end_index > start_index:
|
| 83 |
-
json_str = raw_text[start_index : end_index + 1]
|
| 84 |
-
return json.loads(json_str)
|
| 85 |
-
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
|
| 86 |
-
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
|
| 87 |
-
|
| 88 |
-
def extract_image_exif(image_path: str) -> str:
|
| 89 |
-
try:
|
| 90 |
-
img = Image.open(image_path); exif_data = img._getexif()
|
| 91 |
-
if not exif_data: return "No EXIF metadata found."
|
| 92 |
-
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
|
| 93 |
-
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
|
| 94 |
-
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
|
| 95 |
-
return metadata_str if metadata_str else "No relevant EXIF metadata found."
|
| 96 |
-
except Exception: return "Could not read EXIF data."
|
| 97 |
-
|
| 98 |
-
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
|
| 99 |
-
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
| 100 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 101 |
-
exif_metadata = extract_image_exif(initial_image_path)
|
| 102 |
-
prompt_file = "prompts/unified_storyboard_prompt.txt"
|
| 103 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 104 |
-
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
|
| 105 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
| 106 |
-
model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(initial_image_path)
|
| 107 |
-
response = model.generate_content([director_prompt, img])
|
| 108 |
-
try:
|
| 109 |
-
storyboard_data = robust_json_parser(response.text)
|
| 110 |
-
storyboard = storyboard_data.get("scene_storyboard", [])
|
| 111 |
-
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
|
| 112 |
-
return storyboard
|
| 113 |
-
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou: {e}. Resposta recebida: {response.text}")
|
| 114 |
-
|
| 115 |
-
# --- Funções da ETAPA 2 (Keyframes) ---
|
| 116 |
-
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
|
| 117 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
| 118 |
-
prompt_file = "prompts/img2img_evolution_prompt.txt"
|
| 119 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 120 |
-
director_prompt = template.format(target_scene_description=target_scene_description)
|
| 121 |
-
model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(previous_image_path)
|
| 122 |
-
response = model.generate_content([director_prompt, "Previous Image:", img])
|
| 123 |
-
return response.text.strip().replace("\"", "")
|
| 124 |
-
|
| 125 |
-
def run_keyframe_generation(storyboard, initial_ref_image_path, sequential_ref_task, *additional_refs_and_tasks, progress=gr.Progress()):
|
| 126 |
-
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
|
| 127 |
-
if not initial_ref_image_path: raise gr.Error("A imagem de referência principal é obrigatória.")
|
| 128 |
-
log_history = ""; generated_images_for_gallery = []
|
| 129 |
-
base_reference_items = []
|
| 130 |
-
num_pairs = len(additional_refs_and_tasks) // 2
|
| 131 |
-
for i in range(num_pairs):
|
| 132 |
-
img_path, task = additional_refs_and_tasks[i * 2], additional_refs_and_tasks[i * 2 + 1]
|
| 133 |
-
if img_path: base_reference_items.append({'image_np': np.array(Image.open(img_path).convert("RGB")), 'task': task})
|
| 134 |
-
try:
|
| 135 |
-
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
|
| 136 |
-
dreamo_generator_singleton.to_gpu()
|
| 137 |
-
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
|
| 138 |
-
keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path
|
| 139 |
-
for i, scene_description in enumerate(storyboard):
|
| 140 |
-
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
|
| 141 |
-
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
|
| 142 |
-
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
|
| 143 |
-
recent_references_paths = keyframe_paths[-3:]
|
| 144 |
-
sequential_reference_items = [{'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': sequential_ref_task} for ref_path in recent_references_paths]
|
| 145 |
-
all_reference_items = base_reference_items + sequential_reference_items
|
| 146 |
-
log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(all_reference_items)} refs. Prompt do D.A.: \"{dreamo_prompt}\"\n"
|
| 147 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
|
| 148 |
-
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
|
| 149 |
-
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=all_reference_items, prompt=dreamo_prompt, width=width, height=height)
|
| 150 |
-
image.save(output_path)
|
| 151 |
-
keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path
|
| 152 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
|
| 153 |
-
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
|
| 154 |
-
finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache()
|
| 155 |
-
log_history += "\nPintura de todos os keyframes concluída.\n"
|
| 156 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths}
|
| 157 |
-
|
| 158 |
-
# --- Funções da ETAPA 3 (Produção de Vídeo) ---
|
| 159 |
-
def get_initial_motion_prompt(user_prompt, start_image_path, destination_image_path, dest_scene_desc):
|
| 160 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 161 |
-
try:
|
| 162 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
| 163 |
-
model = genai.GenerativeModel('gemini-2.0-flash')
|
| 164 |
-
prompt_file = "prompts/initial_motion_prompt.txt"
|
| 165 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 166 |
-
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
|
| 167 |
-
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
|
| 168 |
-
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
|
| 169 |
-
response = model.generate_content(model_contents)
|
| 170 |
-
return response.text.strip()
|
| 171 |
-
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
| 172 |
-
|
| 173 |
-
def get_dynamic_motion_prompt(user_prompt, story_history, memory_image_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc):
|
| 174 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 175 |
-
try:
|
| 176 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
| 177 |
-
model = genai.GenerativeModel('gemini-2.0-flash')
|
| 178 |
-
prompt_file = "prompts/dynamic_motion_prompt.txt"
|
| 179 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 180 |
-
cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc)
|
| 181 |
-
mem_img, path_img, dest_img = Image.open(memory_image_path), Image.open(path_image_path), Image.open(destination_image_path)
|
| 182 |
-
model_contents = ["START Image (Memory):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt]
|
| 183 |
-
response = model.generate_content(model_contents)
|
| 184 |
-
return response.text.strip()
|
| 185 |
-
except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
| 186 |
-
|
| 187 |
-
def run_video_production(prompt_geral, keyframe_images_state, scene_storyboard, seed, cfg,
|
| 188 |
-
video_duration, video_fps, num_inference_steps, handoff_point, use_slicing,
|
| 189 |
-
mid_cond_strength, end_cond_offset, end_cond_strength,
|
| 190 |
-
progress=gr.Progress()):
|
| 191 |
-
if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.")
|
| 192 |
-
log_history = "\n--- FASE 3/4: Iniciando Produção com Lógica 'Big Bang' e 'Eco Fantasma'...\n"
|
| 193 |
-
yield {production_log_output: log_history, video_gallery_glitch: []}
|
| 194 |
-
|
| 195 |
-
VIDEO_TOTAL_FRAMES = int(video_duration * video_fps)
|
| 196 |
-
END_COND_FRAME = VIDEO_TOTAL_FRAMES - int(end_cond_offset)
|
| 197 |
-
if int(handoff_point) >= END_COND_FRAME:
|
| 198 |
-
raise gr.Error(f"Erro de timing: O 'Ponto de Handoff' ({handoff_point}) não pode ocorrer no mesmo frame ou depois do frame de 'Destino' ({END_COND_FRAME}). Aumente a duração, diminua o offset ou reduza o ponto de handoff.")
|
| 199 |
-
|
| 200 |
-
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 201 |
-
try:
|
| 202 |
-
pipeline_instance.to(target_device)
|
| 203 |
-
video_fragments, story_history = [], ""
|
| 204 |
-
kinetic_memory_path = None # Esta será a nossa memória, o "Eco Fantasma"
|
| 205 |
-
|
| 206 |
-
with Image.open(keyframe_images_state[1]) as img: width, height = img.size
|
| 207 |
-
|
| 208 |
-
num_transitions = len(keyframe_images_state) - 2
|
| 209 |
-
for i in range(num_transitions):
|
| 210 |
-
fragment_num = i + 1
|
| 211 |
-
progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}/{num_transitions}")
|
| 212 |
-
log_history += f"\n--- FRAGMENTO {fragment_num} ---\n"
|
| 213 |
-
|
| 214 |
-
if i == 0: # Big Bang
|
| 215 |
-
start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2]
|
| 216 |
-
dest_scene_desc = scene_storyboard[1]
|
| 217 |
-
log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
| 218 |
-
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
|
| 219 |
-
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, END_COND_FRAME, float(end_cond_strength))]
|
| 220 |
-
else: # Handoff Cinético com "Eco Fantasma"
|
| 221 |
-
memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2]
|
| 222 |
-
path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1]
|
| 223 |
-
log_history += f" - Memória (Eco Fantasma): {os.path.basename(memory_path)}\n - Caminho (Déjà Vu): {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
| 224 |
-
current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc)
|
| 225 |
-
conditioning_items_data = [(memory_path, 0, 1.0), (path_path, int(handoff_point), float(mid_cond_strength)), (destination_path, END_COND_FRAME, float(end_cond_strength))]
|
| 226 |
-
|
| 227 |
-
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}"
|
| 228 |
-
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history}
|
| 229 |
-
|
| 230 |
-
full_fragment_path, _ = run_ltx_animation(
|
| 231 |
-
current_fragment_index=fragment_num, motion_prompt=current_motion_prompt, conditioning_items_data=conditioning_items_data,
|
| 232 |
-
width=width, height=height, seed=seed, cfg=cfg, video_total_frames=VIDEO_TOTAL_FRAMES, video_fps=video_fps,
|
| 233 |
-
num_inference_steps=num_inference_steps, use_slicing=use_slicing, progress=progress
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
# *** LÓGICA DO ECO FANTASMA IMPLEMENTADA AQUI ***
|
| 237 |
-
is_last_fragment = (i == num_transitions - 1)
|
| 238 |
-
if is_last_fragment:
|
| 239 |
-
final_fragment_path = full_fragment_path
|
| 240 |
-
log_history += " - Último fragmento gerado, mantendo a duração total para um final limpo.\n"
|
| 241 |
-
else:
|
| 242 |
-
# 1. Extrai o "Eco Fantasma" do vídeo COMPLETO para a PRÓXIMA geração
|
| 243 |
-
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_fantasma_from_frag_{fragment_num}.png")
|
| 244 |
-
kinetic_memory_path = extract_last_frame_as_image(full_fragment_path, eco_output_path)
|
| 245 |
-
|
| 246 |
-
# 2. Corta o vídeo para a montagem FINAL
|
| 247 |
-
final_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4")
|
| 248 |
-
trim_video_to_frames(full_fragment_path, final_fragment_path, int(handoff_point))
|
| 249 |
-
|
| 250 |
-
log_history += f" - Gerado e cortado em {handoff_point} frames.\n - Novo Eco Fantasma (Déjà Vu) criado para o próximo fragmento: {os.path.basename(kinetic_memory_path)}\n"
|
| 251 |
-
|
| 252 |
-
video_fragments.append(final_fragment_path)
|
| 253 |
-
yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
|
| 254 |
-
|
| 255 |
-
progress(1.0, desc="Produção Concluída.")
|
| 256 |
-
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
|
| 257 |
-
finally:
|
| 258 |
-
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
# --- Funções Utilitárias e de Pós-Produção ---
|
| 262 |
-
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
|
| 263 |
-
if not image_path: return None
|
| 264 |
-
try:
|
| 265 |
-
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
|
| 266 |
-
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
|
| 267 |
-
return output_path
|
| 268 |
-
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
|
| 269 |
-
|
| 270 |
-
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
|
| 271 |
-
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
| 272 |
-
|
| 273 |
-
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg,
|
| 274 |
-
video_total_frames, video_fps, num_inference_steps, use_slicing, progress=gr.Progress()):
|
| 275 |
-
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
|
| 276 |
-
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = pipeline_instance.device
|
| 277 |
-
try:
|
| 278 |
-
if use_slicing: pipeline_instance.enable_attention_slicing()
|
| 279 |
-
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
|
| 280 |
-
actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1)
|
| 281 |
-
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
| 282 |
-
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
| 283 |
-
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
|
| 284 |
-
kwargs = {
|
| 285 |
-
"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts",
|
| 286 |
-
"height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": int(video_fps),
|
| 287 |
-
"generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index),
|
| 288 |
-
"output_type": "pt", "guidance_scale": float(cfg), "timesteps": int(num_inference_steps),
|
| 289 |
-
"conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"),
|
| 290 |
-
"decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"),
|
| 291 |
-
"image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True,
|
| 292 |
-
"mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4
|
| 293 |
-
}
|
| 294 |
-
result_tensor = pipeline_instance(**kwargs).images
|
| 295 |
-
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
|
| 296 |
-
cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w]
|
| 297 |
-
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
| 298 |
-
with imageio.get_writer(output_path, fps=int(video_fps), codec='libx264', quality=8) as writer:
|
| 299 |
-
for i, frame in enumerate(video_np): writer.append_data(frame)
|
| 300 |
-
return output_path, actual_num_frames
|
| 301 |
-
finally:
|
| 302 |
-
if use_slicing: pipeline_instance.disable_attention_slicing()
|
| 303 |
-
|
| 304 |
-
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
|
| 305 |
-
try:
|
| 306 |
-
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
|
| 307 |
-
return output_path
|
| 308 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
|
| 309 |
-
|
| 310 |
-
def extract_last_frame_as_image(video_path: str, output_image_path: str) -> str:
|
| 311 |
-
try:
|
| 312 |
-
subprocess.run(f"ffmpeg -y -v error -sseof -1 -i \"{video_path}\" -update 1 -q:v 1 \"{output_image_path}\"", shell=True, check=True, text=True)
|
| 313 |
-
return output_image_path
|
| 314 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao extrair último frame: {e.stderr}")
|
| 315 |
-
|
| 316 |
-
def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
|
| 317 |
-
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
|
| 318 |
-
progress(0.5, desc="Montando a obra-prima final...");
|
| 319 |
-
try:
|
| 320 |
-
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
|
| 321 |
-
with open(list_file_path, "w") as f:
|
| 322 |
-
for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n")
|
| 323 |
-
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
|
| 324 |
-
progress(1.0, desc="Montagem concluída!")
|
| 325 |
-
return final_output_path
|
| 326 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
|
| 327 |
-
|
| 328 |
-
# --- Ato 5: A Interface com o Mundo (UI) ---
|
| 329 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 330 |
-
gr.Markdown("# NOVINHO-5.3 (Déjà Vu)\n*By Carlex & Gemini & DreamO*")
|
| 331 |
-
|
| 332 |
-
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
| 333 |
-
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
|
| 334 |
-
|
| 335 |
-
# State variables
|
| 336 |
-
scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
|
| 337 |
-
prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
|
| 338 |
-
MAX_ADDITIONAL_REFS = 4
|
| 339 |
-
|
| 340 |
-
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
|
| 341 |
-
with gr.Row():
|
| 342 |
-
with gr.Column(scale=1):
|
| 343 |
-
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
| 344 |
-
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Atos (Keyframes)")
|
| 345 |
-
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
|
| 346 |
-
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
|
| 347 |
-
with gr.Column(scale=2):
|
| 348 |
-
storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
|
| 349 |
-
|
| 350 |
-
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
|
| 351 |
-
with gr.Row():
|
| 352 |
-
with gr.Column(scale=2):
|
| 353 |
-
gr.Markdown("O Pintor usará as referências abaixo + as **3 últimas imagens** geradas para criar a próxima.")
|
| 354 |
-
with gr.Group():
|
| 355 |
-
ref1_image = gr.Image(label="Referência Principal (Automática da Etapa 1)", type="filepath", interactive=False)
|
| 356 |
-
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa das Referências em Cadeia")
|
| 357 |
-
additional_ref_images, additional_ref_tasks = [], []
|
| 358 |
-
with gr.Accordion("Referências Adicionais do Pintor (Opcional)", open=False):
|
| 359 |
-
with gr.Tabs():
|
| 360 |
-
for i in range(MAX_ADDITIONAL_REFS):
|
| 361 |
-
with gr.TabItem(f"Ref. Extra {i+1}"):
|
| 362 |
-
with gr.Column():
|
| 363 |
-
ref_img = gr.Image(label=f"Imagem de Referência Extra {i+1}", type="filepath", scale=2)
|
| 364 |
-
ref_task_dd = gr.Dropdown(choices=["ip", "id", "style"], value="style", label=f"Tarefa da Ref. Extra {i+1}")
|
| 365 |
-
additional_ref_images.append(ref_img)
|
| 366 |
-
additional_ref_tasks.append(ref_task_dd)
|
| 367 |
-
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
|
| 368 |
-
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=10, interactive=False)
|
| 369 |
-
with gr.Column(scale=1):
|
| 370 |
-
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
|
| 371 |
-
|
| 372 |
-
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
|
| 373 |
-
with gr.Row():
|
| 374 |
-
with gr.Column(scale=1):
|
| 375 |
-
with gr.Row():
|
| 376 |
-
seed_number = gr.Number(42, label="Seed")
|
| 377 |
-
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
|
| 378 |
-
with gr.Accordion("Controles Avançados de Timing e Performance", open=False):
|
| 379 |
-
video_duration_slider = gr.Slider(label="Duração da Cena (segundos)", minimum=2.0, maximum=10.0, value=VIDEO_DURATION_SECONDS_DEFAULT, step=0.5)
|
| 380 |
-
video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=30, value=VIDEO_FPS_DEFAULT, step=1)
|
| 381 |
-
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência", minimum=10, maximum=50, value=30, step=1)
|
| 382 |
-
handoff_point_slider = gr.Slider(label="Ponto de Handoff (Frames)", minimum=30, maximum=300, value=150, step=1, info="Define o corte do vídeo para a montagem final.")
|
| 383 |
-
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True)
|
| 384 |
-
gr.Markdown("---"); gr.Markdown("#### Controles de Condicionamento")
|
| 385 |
-
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05)
|
| 386 |
-
end_cond_offset_slider = gr.Slider(label="Offset do 'Destino' (frames do fim)", minimum=1, maximum=48, value=8, step=1, info="Define quão cedo o vídeo converge para o destino e qual frame será o 'Eco Fantasma'.")
|
| 387 |
-
end_cond_strength_slider = gr.Slider(label="Força do 'Destino'", minimum=0.1, maximum=1.0, value=1.0, step=0.05)
|
| 388 |
-
gr.Markdown(
|
| 389 |
-
"""
|
| 390 |
-
**Instruções (Lógica 'Eco Fantasma'):**
|
| 391 |
-
- O `Eco Fantasma` (a memória do futuro) é extraído do último frame do vídeo *completo*, antes do corte.
|
| 392 |
-
- Este `Eco` se torna o ponto de partida para o próximo fragmento, garantindo máxima continuidade.
|
| 393 |
-
- O `Ponto de Handoff` define o frame de corte para a montagem e onde o `Keyframe` seguinte ('Caminho') será posicionado no tempo.
|
| 394 |
-
"""
|
| 395 |
-
)
|
| 396 |
-
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
|
| 397 |
-
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=15, interactive=False)
|
| 398 |
-
with gr.Column(scale=1):
|
| 399 |
-
video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video")
|
| 400 |
-
|
| 401 |
-
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (IA Editor)")
|
| 402 |
-
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
|
| 403 |
-
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
|
| 404 |
-
|
| 405 |
-
# --- Event Handlers ---
|
| 406 |
-
director_button.click(fn=run_storyboard_generation, inputs=[num_fragments_input, prompt_input, image_input], outputs=[scene_storyboard_state]).success(fn=lambda s, p: (s, p), inputs=[scene_storyboard_state, prompt_input], outputs=[storyboard_to_show, prompt_geral_state]).success(fn=process_image_to_square, inputs=[image_input], outputs=[processed_ref_path_state]).success(fn=lambda p: p, inputs=[processed_ref_path_state], outputs=[ref1_image])
|
| 407 |
-
|
| 408 |
-
photographer_button_inputs = [scene_storyboard_state, ref1_image, ref1_task]
|
| 409 |
-
for i in range(MAX_ADDITIONAL_REFS):
|
| 410 |
-
photographer_button_inputs.append(additional_ref_images[i])
|
| 411 |
-
photographer_button_inputs.append(additional_ref_tasks[i])
|
| 412 |
-
photographer_button.click(fn=run_keyframe_generation, inputs=photographer_button_inputs, outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state])
|
| 413 |
-
|
| 414 |
-
animator_button_inputs = [prompt_geral_state, keyframe_images_state, scene_storyboard_state, seed_number, cfg_slider,
|
| 415 |
-
video_duration_slider, video_fps_slider, num_inference_steps_slider, handoff_point_slider, slicing_checkbox,
|
| 416 |
-
mid_cond_strength_slider, end_cond_offset_slider, end_cond_strength_slider]
|
| 417 |
-
animator_button_outputs = [production_log_output, video_gallery_glitch, fragment_list_state]
|
| 418 |
-
animator_button.click(fn=run_video_production, inputs=animator_button_inputs, outputs=animator_button_outputs)
|
| 419 |
-
|
| 420 |
-
editor_button.click(fn=concatenate_and_trim_masterpiece, inputs=[fragment_list_state], outputs=[final_video_output])
|
| 421 |
-
|
| 422 |
-
if __name__ == "__main__":
|
| 423 |
-
demo.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|