Spaces:
Runtime error
Runtime error
| # Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente. | |
| # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
| # | |
| # Contato: | |
| # Carlos Rodrigues dos Santos | |
| # carlex22@gmail.com | |
| # Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025 | |
| # | |
| # Repositórios e Projetos Relacionados: | |
| # GitHub: https://github.com/carlex22/Aduc-sdr | |
| # Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/ | |
| # Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/ | |
| # | |
| # Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo | |
| # sob os termos da Licença Pública Geral Affero da GNU como publicada pela | |
| # Free Software Foundation, seja a versão 3 da Licença, ou | |
| # (a seu critério) qualquer versão posterior. | |
| # --- app.py (NOVIM-5.5: O Fator Humano) --- | |
| # --- Ato 1: A Convocação da Orquestra (Importações) --- | |
| import gradio as gr | |
| import torch | |
| import os | |
| import yaml | |
| from PIL import Image, ImageOps, ExifTags | |
| import shutil | |
| import gc | |
| import subprocess | |
| import google.generativeai as genai | |
| import numpy as np | |
| import imageio | |
| from pathlib import Path | |
| import huggingface_hub | |
| import json | |
| import time | |
| from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding | |
| from dreamo_helpers import dreamo_generator_singleton | |
| # --- Ato 2: A Preparação do Palco (Configurações) --- | |
| config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml" | |
| with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file) | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| models_dir = "downloaded_models_gradio" | |
| Path(models_dir).mkdir(parents=True, exist_ok=True) | |
| WORKSPACE_DIR = "aduc_workspace" | |
| GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") | |
| VIDEO_FPS = 24 | |
| TARGET_RESOLUTION = 420 | |
| MAX_KEYFRAMES_UI = 10 # Limite de abas de keyframe na UI | |
| print("Criando pipelines LTX na CPU (estado de repouso)...") | |
| distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False) | |
| pipeline_instance = create_ltx_video_pipeline( | |
| ckpt_path=distilled_model_actual_path, | |
| precision=PIPELINE_CONFIG_YAML["precision"], | |
| text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], | |
| sampler=PIPELINE_CONFIG_YAML["sampler"], | |
| device='cpu' | |
| ) | |
| print("Modelos LTX prontos (na CPU).") | |
| # --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) --- | |
| def robust_json_parser(raw_text: str) -> dict: | |
| try: | |
| start_index = raw_text.find('{'); end_index = raw_text.rfind('}') | |
| if start_index != -1 and end_index != -1 and end_index > start_index: | |
| json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str) | |
| else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.") | |
| except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}") | |
| def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str): | |
| if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.") | |
| if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
| prompt_file = "prompts/unified_storyboard_prompt.txt" | |
| with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
| director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata="") | |
| genai.configure(api_key=GEMINI_API_KEY) | |
| model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path) | |
| response = model.generate_content([director_prompt, img]) | |
| try: | |
| storyboard_data = robust_json_parser(response.text) | |
| storyboard = storyboard_data.get("scene_storyboard", []) | |
| if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}") | |
| return storyboard | |
| except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou: {e}. Resposta: {response.text}") | |
| def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str: | |
| genai.configure(api_key=GEMINI_API_KEY) | |
| prompt_file = "prompts/img2img_evolution_prompt.txt" | |
| with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
| director_prompt = template.format(target_scene_description=target_scene_description) | |
| model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path) | |
| response = model.generate_content([director_prompt, "Previous Image:", img]) | |
| return response.text.strip().replace("\"", "") | |
| def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()): | |
| if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.") | |
| initial_ref_image_path = ref_images_tasks[0]['image'] | |
| if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.") | |
| log_history = ""; keyframe_paths = [] | |
| try: | |
| pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache() | |
| dreamo_generator_singleton.to_gpu() | |
| with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32 | |
| current_ref_image_path = initial_ref_image_path | |
| for i, scene_description in enumerate(storyboard): | |
| progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}") | |
| log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n" | |
| dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description) | |
| reference_items = [] | |
| for item in ref_images_tasks: | |
| if item['image'] and os.path.exists(item['image']): | |
| reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']}) | |
| log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n" | |
| yield {keyframe_log_output: gr.update(value=log_history)} | |
| output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png") | |
| image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height) | |
| image.save(output_path) | |
| keyframe_paths.append(output_path); current_ref_image_path = output_path | |
| except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}") | |
| finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache() | |
| log_history += "\nPintura de todos os keyframes concluída.\n" | |
| yield {keyframe_log_output: gr.update(value=log_history), keyframe_images_state: keyframe_paths} | |
| def get_motion_prompt(user_prompt, start_path, end_path, scene_desc): | |
| return f"A smooth, cinematic transition from the start image towards the end image, focusing on: {scene_desc}" | |
| def run_video_production( | |
| video_duration_seconds, video_fps, end_cond_strength, | |
| prompt_geral, keyframe_paths_from_ui, scene_storyboard, cfg, | |
| progress=gr.Progress() | |
| ): | |
| valid_keyframes = [p for p in keyframe_paths_from_ui if p is not None and os.path.exists(p)] | |
| if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("São necessários pelo menos 2 keyframes válidos para produzir um vídeo.") | |
| log_history = "\n--- FASE 3: Iniciando Produção...\n" | |
| yield {production_log_output: log_history, video_gallery_glitch: []} | |
| video_total_frames = int(video_duration_seconds * video_fps) | |
| seed = int(time.time()) | |
| try: | |
| pipeline_instance.to('cuda') | |
| video_fragments = []; kinetic_memory_path = valid_keyframes[0] | |
| with Image.open(kinetic_memory_path) as img: width, height = img.size | |
| for i in range(len(valid_keyframes) - 1): | |
| fragment_num = i + 1 | |
| progress(i / (len(valid_keyframes) - 1), desc=f"Filmando Fragmento {fragment_num}") | |
| start_path = kinetic_memory_path | |
| destination_path = valid_keyframes[i+1] | |
| motion_prompt = get_motion_prompt(prompt_geral, start_path, destination_path, scene_storyboard[i]) | |
| conditioning_items_data = [(start_path, 0, 1.0), (destination_path, video_total_frames - 1, end_cond_strength)] | |
| fragment_path, _ = run_ltx_animation( | |
| current_fragment_index=fragment_num, motion_prompt=motion_prompt, | |
| conditioning_items_data=conditioning_items_data, width=width, height=height, | |
| seed=seed, cfg=cfg, progress=progress, | |
| video_total_frames=video_total_frames, video_fps=video_fps, use_attention_slicing=True, num_inference_steps=30 | |
| ) | |
| video_fragments.append(fragment_path) | |
| eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.png") | |
| kinetic_memory_path = extract_last_frame_as_image(fragment_path, eco_output_path) | |
| log_history += f"Fragmento {fragment_num} concluído.\n" | |
| yield {production_log_output: log_history, video_gallery_glitch: video_fragments} | |
| yield {production_log_output: log_history + "\nProdução concluída.", video_gallery_glitch: video_fragments, fragment_list_state: video_fragments} | |
| finally: | |
| pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache() | |
| def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str: | |
| if not image_path: return None | |
| try: | |
| img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS) | |
| output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path) | |
| return output_path | |
| except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}") | |
| def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor: | |
| return load_image_to_tensor_with_resize_and_crop(media_path, height, width) | |
| def run_ltx_animation( | |
| current_fragment_index, motion_prompt, conditioning_items_data, | |
| width, height, seed, cfg, progress, | |
| video_total_frames, video_fps, use_attention_slicing, num_inference_steps | |
| ): | |
| progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}..."); | |
| output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| try: | |
| if use_attention_slicing: pipeline_instance.enable_attention_slicing() | |
| conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data] | |
| actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1) | |
| padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 | |
| padding_vals = calculate_padding(height, width, padded_h, padded_w) | |
| for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals) | |
| first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() | |
| first_pass_config['num_inference_steps'] = int(num_inference_steps) | |
| kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)} | |
| result_tensor = pipeline_instance(**kwargs).images | |
| pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None | |
| cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) | |
| with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer: | |
| for i, frame in enumerate(video_np): writer.append_data(frame) | |
| return output_path, actual_num_frames | |
| finally: | |
| if use_attention_slicing: pipeline_instance.disable_attention_slicing() | |
| def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str: | |
| try: | |
| subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True) | |
| return output_path | |
| except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}") | |
| def extract_last_frame_as_image(video_path: str, output_image_path: str) -> str: | |
| try: | |
| subprocess.run(f"ffmpeg -y -v error -sseof -1 -i \"{video_path}\" -update 1 -q:v 1 \"{output_image_path}\"", shell=True, check=True, text=True) | |
| return output_image_path | |
| except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao extrair último frame: {e.stderr}") | |
| def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()): | |
| if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.") | |
| progress(0.5, desc="Montando a obra-prima final..."); | |
| try: | |
| list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4") | |
| with open(list_file_path, "w") as f: | |
| for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n") | |
| subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True) | |
| progress(1.0, desc="Montagem concluída!") | |
| return final_output_path | |
| except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}") | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# NOVIM-5.5 (O Fator Humano)\n*By Carlex & Gemini & DreamO*") | |
| if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR) | |
| os.makedirs(WORKSPACE_DIR) | |
| scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([]) | |
| prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("") | |
| gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt_input = gr.Textbox(label="Ideia Geral (Prompt)") | |
| num_fragments_input = gr.Slider(2, MAX_KEYFRAMES_UI, 4, step=1, label="Número de Atos (Keyframes)") | |
| image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})") | |
| director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary") | |
| with gr.Column(scale=2): | |
| storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado") | |
| gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Row(): | |
| ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath") | |
| ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal") | |
| with gr.Row(): | |
| ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath") | |
| ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária") | |
| photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary") | |
| keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=10, interactive=False) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### Painel de Edição de Keyframes") | |
| keyframe_ui_slots = [] | |
| keyframe_ui_tabs_visibility = [] | |
| with gr.Tabs() as keyframe_tabs: | |
| for i in range(MAX_KEYFRAMES_UI): | |
| with gr.TabItem(f"Keyframe {i+1}", visible=(i<2)) as keyframe_tab: | |
| keyframe_ui_slots.append(gr.Image(label=f"Conteúdo do Keyframe {i+1}", type="filepath", interactive=True)) | |
| keyframe_ui_tabs_visibility.append(keyframe_tab) | |
| gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| cfg_slider = gr.Slider(1.0, 10.0, 7.5, step=0.1, label="CFG") | |
| end_cond_strength_slider = gr.Slider(label="Força de Convergência do Destino", minimum=0.1, maximum=1.0, value=1.0, step=0.05) | |
| with gr.Accordion("Controles Avançados de Timing", open=False): | |
| video_duration_slider = gr.Slider(label="Duração da Cena (segundos)", minimum=2.0, maximum=10.0, value=4.0, step=0.5) | |
| video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=36, value=VIDEO_FPS, step=1) | |
| animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary") | |
| production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False) | |
| with gr.Column(scale=1): | |
| video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video") | |
| gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)") | |
| editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary") | |
| final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION) | |
| def process_and_update_storyboard(num_fragments, prompt, image_path): | |
| processed_path = process_image_to_square(image_path) | |
| if not processed_path: raise gr.Error("A imagem de referência é inválida.") | |
| storyboard = run_storyboard_generation(num_fragments, prompt, processed_path) | |
| tab_updates = [gr.update(visible=(i < num_fragments)) for i in range(MAX_KEYFRAMES_UI)] | |
| return storyboard, prompt, processed_path, storyboard, processed_path, *tab_updates | |
| director_button.click( | |
| fn=process_and_update_storyboard, | |
| inputs=[num_fragments_input, prompt_input, image_input], | |
| outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state, storyboard_to_show, ref1_image] + keyframe_ui_tabs_visibility | |
| ) | |
| def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()): | |
| ref_data = [{'image': ref1_img, 'task': ref1_tsk}, {'image': ref2_img, 'task': ref2_tsk}] | |
| final_update = {} | |
| for update in run_keyframe_generation(storyboard, ref_data, progress): | |
| final_update = update | |
| final_paths = final_update.get('keyframe_images_state', []) | |
| updates = [gr.update(value=final_paths[i] if i < len(final_paths) else None) for i in range(MAX_KEYFRAMES_UI)] | |
| return final_update.get('keyframe_log_output', ''), final_paths, *updates | |
| photographer_button.click( | |
| fn=run_keyframe_generation_wrapper, | |
| inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task], | |
| outputs=[keyframe_log_output, keyframe_images_state] + keyframe_ui_slots | |
| ) | |
| # A lista de inputs para a produção de vídeo agora coleta os keyframes das abas | |
| video_prod_inputs = [ | |
| video_duration_slider, video_fps_slider, end_cond_strength_slider, | |
| prompt_geral_state, | |
| scene_storyboard_state, cfg_slider | |
| ] + keyframe_ui_slots | |
| # A função wrapper é necessária para coletar os valores dos slots de keyframe | |
| def run_video_production_wrapper(duration, fps, strength, prompt, storyboard, cfg, *keyframes, progress=gr.Progress()): | |
| # Filtra os keyframes que não são None | |
| valid_keyframes = [k for k in keyframes if k] | |
| yield from run_video_production(duration, fps, strength, prompt, valid_keyframes, storyboard, cfg, progress) | |
| animator_button.click( | |
| fn=run_video_production_wrapper, | |
| inputs=video_prod_inputs, | |
| outputs=[production_log_output, video_gallery_glitch, fragment_list_state] | |
| ) | |
| editor_button.click( | |
| fn=concatenate_and_trim_masterpiece, | |
| inputs=[fragment_list_state], | |
| outputs=[final_video_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch(server_name="0.0.0.0", share=True) |