Aduc-srd_Novim / flux_kontext_helpers.py
Carlexx's picture
Upload 11 files
46a5dbb verified
# flux_kontext_helpers.py
# Módulo de serviço para o FluxKontext, com gestão de memória atômica.
# Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3.
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
import torch
from PIL import Image
import gc
from diffusers import FluxKontextPipeline
import huggingface_hub
import os
class Generator:
def __init__(self, device_id='cuda:0'):
self.cpu_device = torch.device('cpu')
self.gpu_device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
print(f"WORKER COMPOSITOR: Usando dispositivo: {self.gpu_device}")
self.pipe = None
self._load_pipe_to_cpu()
def _load_pipe_to_cpu(self):
if self.pipe is None:
print("WORKER COMPOSITOR: Carregando modelo FluxKontext para a CPU...")
self.pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
).to(self.cpu_device)
print("WORKER COMPOSITOR: Modelo FluxKontext pronto (na CPU).")
def to_gpu(self):
if self.gpu_device.type == 'cpu': return
print(f"WORKER COMPOSITOR: Movendo modelo para {self.gpu_device}...")
self.pipe.to(self.gpu_device)
print(f"WORKER COMPOSITOR: Modelo na GPU {self.gpu_device}.")
def to_cpu(self):
if self.gpu_device.type == 'cpu': return
print(f"WORKER COMPOSITOR: Descarregando modelo da GPU {self.gpu_device}...")
self.pipe.to(self.cpu_device)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _concatenate_images(self, images, direction="horizontal"):
if not images: return None
valid_images = [img.convert("RGB") for img in images if img is not None]
if not valid_images: return None
if len(valid_images) == 1: return valid_images[0]
if direction == "horizontal":
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
concatenated = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in valid_images:
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else:
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
concatenated = Image.new('RGB', (max_width, total_height))
y_offset = 0
for img in valid_images:
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
@torch.inference_mode()
def generate_image(self, reference_images, prompt, width, height, seed=42):
try:
self.to_gpu()
concatenated_image = self._concatenate_images(reference_images, "horizontal")
if concatenated_image is None:
raise ValueError("Nenhuma imagem de referência válida foi fornecida.")
# ### CORREÇÃO ###
# Ignora o tamanho da imagem concatenada e usa os parâmetros `width` e `height` fornecidos.
image = self.pipe(
image=concatenated_image,
prompt=prompt,
guidance_scale=2.5,
width=width,
height=height,
generator=torch.Generator(device="cpu").manual_seed(seed)
).images[0]
return image
finally:
self.to_cpu()
# --- Instância Singleton ---
print("Inicializando o Compositor de Cenas (FluxKontext)...")
hf_token = os.getenv('HF_TOKEN')
if hf_token: huggingface_hub.login(token=hf_token)
flux_kontext_singleton = Generator(device_id='cuda:0')
print("Compositor de Cenas pronto.")