Spaces:
Runtime error
Runtime error
# flux_kontext_helpers.py | |
# Módulo de serviço para o FluxKontext, com gestão de memória atômica. | |
# Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3. | |
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
import torch | |
from PIL import Image | |
import gc | |
from diffusers import FluxKontextPipeline | |
import huggingface_hub | |
import os | |
class Generator: | |
def __init__(self, device_id='cuda:0'): | |
self.cpu_device = torch.device('cpu') | |
self.gpu_device = torch.device(device_id if torch.cuda.is_available() else 'cpu') | |
print(f"WORKER COMPOSITOR: Usando dispositivo: {self.gpu_device}") | |
self.pipe = None | |
self._load_pipe_to_cpu() | |
def _load_pipe_to_cpu(self): | |
if self.pipe is None: | |
print("WORKER COMPOSITOR: Carregando modelo FluxKontext para a CPU...") | |
self.pipe = FluxKontextPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16 | |
).to(self.cpu_device) | |
print("WORKER COMPOSITOR: Modelo FluxKontext pronto (na CPU).") | |
def to_gpu(self): | |
if self.gpu_device.type == 'cpu': return | |
print(f"WORKER COMPOSITOR: Movendo modelo para {self.gpu_device}...") | |
self.pipe.to(self.gpu_device) | |
print(f"WORKER COMPOSITOR: Modelo na GPU {self.gpu_device}.") | |
def to_cpu(self): | |
if self.gpu_device.type == 'cpu': return | |
print(f"WORKER COMPOSITOR: Descarregando modelo da GPU {self.gpu_device}...") | |
self.pipe.to(self.cpu_device) | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
def _concatenate_images(self, images, direction="horizontal"): | |
if not images: return None | |
valid_images = [img.convert("RGB") for img in images if img is not None] | |
if not valid_images: return None | |
if len(valid_images) == 1: return valid_images[0] | |
if direction == "horizontal": | |
total_width = sum(img.width for img in valid_images) | |
max_height = max(img.height for img in valid_images) | |
concatenated = Image.new('RGB', (total_width, max_height)) | |
x_offset = 0 | |
for img in valid_images: | |
y_offset = (max_height - img.height) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
x_offset += img.width | |
else: | |
max_width = max(img.width for img in valid_images) | |
total_height = sum(img.height for img in valid_images) | |
concatenated = Image.new('RGB', (max_width, total_height)) | |
y_offset = 0 | |
for img in valid_images: | |
x_offset = (max_width - img.width) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
y_offset += img.height | |
return concatenated | |
def generate_image(self, reference_images, prompt, width, height, seed=42): | |
try: | |
self.to_gpu() | |
concatenated_image = self._concatenate_images(reference_images, "horizontal") | |
if concatenated_image is None: | |
raise ValueError("Nenhuma imagem de referência válida foi fornecida.") | |
# ### CORREÇÃO ### | |
# Ignora o tamanho da imagem concatenada e usa os parâmetros `width` e `height` fornecidos. | |
image = self.pipe( | |
image=concatenated_image, | |
prompt=prompt, | |
guidance_scale=2.5, | |
width=width, | |
height=height, | |
generator=torch.Generator(device="cpu").manual_seed(seed) | |
).images[0] | |
return image | |
finally: | |
self.to_cpu() | |
# --- Instância Singleton --- | |
print("Inicializando o Compositor de Cenas (FluxKontext)...") | |
hf_token = os.getenv('HF_TOKEN') | |
if hf_token: huggingface_hub.login(token=hf_token) | |
flux_kontext_singleton = Generator(device_id='cuda:0') | |
print("Compositor de Cenas pronto.") |