Spaces:
Runtime error
Runtime error
# dreamo_helpers.py (CORRIGIDO) | |
# MΓ³dulo de serviΓ§o para o DreamO, com gestΓ£o de memΓ³ria e aceitando uma lista dinΓ’mica de referΓͺncias. | |
import os | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
import huggingface_hub | |
import gc | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from torchvision.transforms.functional import normalize | |
from dreamo.dreamo_pipeline import DreamOPipeline | |
from dreamo.utils import img2tensor, tensor2img | |
from tools import BEN2 | |
class Generator: | |
def __init__(self): | |
self.cpu_device = torch.device('cpu') | |
self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print("Carregando modelos DreamO para a CPU...") | |
model_root = 'black-forest-labs/FLUX.1-dev' | |
self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16) | |
self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True) | |
self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval() | |
huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models') | |
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth') | |
self.face_helper = FaceRestoreHelper( | |
upscale_factor=1, face_size=512, crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device, | |
) | |
print("Modelos DreamO prontos (na CPU).") | |
def to_gpu(self): | |
if self.gpu_device.type == 'cpu': return | |
print("Movendo modelos DreamO para a GPU...") | |
self.dreamo_pipeline.to(self.gpu_device) | |
self.bg_rm_model.to(self.gpu_device) | |
self.face_helper.device = self.gpu_device | |
self.dreamo_pipeline.t5_embedding.to(self.gpu_device) | |
self.dreamo_pipeline.task_embedding.to(self.gpu_device) | |
self.dreamo_pipeline.idx_embedding.to(self.gpu_device) | |
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device) | |
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device) | |
print("Modelos DreamO na GPU.") | |
def to_cpu(self): | |
if self.gpu_device.type == 'cpu': return | |
print("Descarregando modelos DreamO da GPU...") | |
self.dreamo_pipeline.to(self.cpu_device) | |
self.bg_rm_model.to(self.cpu_device) | |
self.face_helper.device = self.cpu_device | |
self.dreamo_pipeline.t5_embedding.to(self.cpu_device) | |
self.dreamo_pipeline.task_embedding.to(self.cpu_device) | |
self.dreamo_pipeline.idx_embedding.to(self.cpu_device) | |
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device) | |
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device) | |
gc.collect() | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
def generate_image_with_gpu_management(self, reference_items, prompt, width, height): | |
try: | |
self.to_gpu() | |
ref_conds = [] | |
for idx, item in enumerate(reference_items): | |
ref_image_np = item.get('image_np') | |
ref_task = item.get('task') | |
if ref_image_np is not None: | |
if ref_task == "id": | |
ref_image = self.get_align_face(ref_image_np) | |
elif ref_task != "style": | |
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np)) | |
else: | |
ref_image = ref_image_np | |
ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0 | |
ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16) | |
ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1}) | |
# <<< CORREΓΓO APLICADA AQUI >>> | |
image = self.dreamo_pipeline( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=12, | |
guidance_scale=4.5, | |
ref_conds=ref_conds, | |
generator=torch.Generator(device=self.gpu_device).manual_seed(42) # Usar o dispositivo GPU | |
).images[0] | |
return image | |
finally: | |
self.to_cpu() | |
def get_align_face(self, img): | |
self.face_helper.clean_all() | |
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
self.face_helper.read_image(image_bgr) | |
self.face_helper.get_face_landmarks_5(only_center_face=True) | |
self.face_helper.align_warp_face() | |
if len(self.face_helper.cropped_faces) == 0: return None | |
align_face = self.face_helper.cropped_faces[0] | |
input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 | |
input_tensor = input_tensor.to(self.gpu_device) # NecessΓ‘rio para o face_parse | |
parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] | |
parsing_out = parsing_out.argmax(dim=1, keepdim=True) | |
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] | |
bg = sum(parsing_out == i for i in bg_label).bool() | |
white_image = torch.ones_like(input_tensor) | |
face_features_image = torch.where(bg, white_image, input_tensor) | |
return tensor2img(face_features_image, rgb2bgr=False) | |
# --- InstΓ’ncia Singleton --- | |
# A inicializaΓ§Γ£o permanece a mesma, pois Γ© condicional dentro do app.py principal | |
print("Inicializando o Pintor de Cenas (DreamO Helper)...") | |
hf_token = os.getenv('HF_TOKEN') | |
if hf_token: huggingface_hub.login(token=hf_token) | |
dreamo_generator_singleton = Generator() | |
print("Pintor de Cenas (DreamO Helper) pronto.") |