Spaces:
Runtime error
Runtime error
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente. | |
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
# | |
# Contato: | |
# Carlos Rodrigues dos Santos | |
# carlex22@gmail.com | |
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025 | |
# | |
# Repositórios e Projetos Relacionados: | |
# GitHub: https://github.com/carlex22/Aduc-sdr | |
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/ | |
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/ | |
# | |
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo | |
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela | |
# Free Software Foundation, seja a versão 3 da Licença, ou | |
# (a seu critério) qualquer versão posterior. | |
# | |
# Este programa é distribuído na esperança de que seja útil, | |
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de | |
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a | |
# Licença Pública Geral Affero da GNU para mais detalhes. | |
# | |
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU | |
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>. | |
# --- app.py (NOVINHO-6.0: Eco + Déjà Vu) --- | |
# --- Ato 1: A Convocação da Orquestra (Importações) --- | |
import gradio as gr | |
import torch | |
import os | |
import yaml | |
from PIL import Image, ImageOps, ExifTags | |
import shutil | |
import gc | |
import subprocess | |
import google.generativeai as genai | |
import numpy as np | |
import imageio | |
from pathlib import Path | |
import huggingface_hub | |
import json | |
import time | |
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding | |
from dreamo_helpers import dreamo_generator_singleton | |
# --- Ato 2: A Preparação do Palco (Configurações) --- | |
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml" | |
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file) | |
LTX_REPO = "Lightricks/LTX-Video" | |
models_dir = "downloaded_models_gradio" | |
Path(models_dir).mkdir(parents=True, exist_ok=True) | |
WORKSPACE_DIR = "aduc_workspace" | |
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") | |
VIDEO_FPS = 24 | |
TARGET_RESOLUTION = 420 | |
print("Criando pipelines LTX na CPU (estado de repouso)...") | |
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False) | |
pipeline_instance = create_ltx_video_pipeline( | |
ckpt_path=distilled_model_actual_path, | |
precision=PIPELINE_CONFIG_YAML["precision"], | |
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], | |
sampler=PIPELINE_CONFIG_YAML["sampler"], | |
device='cpu' | |
) | |
print("Modelos LTX prontos (na CPU).") | |
# --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) --- | |
def robust_json_parser(raw_text: str) -> dict: | |
try: | |
start_index = raw_text.find('{'); end_index = raw_text.rfind('}') | |
if start_index != -1 and end_index != -1 and end_index > start_index: | |
json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str) | |
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.") | |
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}") | |
def extract_image_exif(image_path: str) -> str: | |
try: | |
img = Image.open(image_path); exif_data = img._getexif() | |
if not exif_data: return "No EXIF metadata found." | |
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS } | |
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength'] | |
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif) | |
return metadata_str if metadata_str else "No relevant EXIF metadata found." | |
except Exception: return "Could not read EXIF data." | |
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str): | |
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.") | |
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
exif_metadata = extract_image_exif(initial_image_path) | |
prompt_file = "prompts/unified_storyboard_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata) | |
genai.configure(api_key=GEMINI_API_KEY) | |
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path) | |
print("Gerando roteiro com análise de visão integrada...") | |
response = model.generate_content([director_prompt, img]) | |
try: | |
storyboard_data = robust_json_parser(response.text) | |
storyboard = storyboard_data.get("scene_storyboard", []) | |
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}") | |
return storyboard | |
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}") | |
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str: | |
genai.configure(api_key=GEMINI_API_KEY) | |
prompt_file = "prompts/img2img_evolution_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
director_prompt = template.format(target_scene_description=target_scene_description) | |
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path) | |
response = model.generate_content([director_prompt, "Previous Image:", img]) | |
return response.text.strip().replace("\"", "") | |
def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()): | |
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.") | |
initial_ref_image_path = ref_images_tasks[0]['image'] | |
if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.") | |
log_history = ""; generated_images_for_gallery = [] | |
try: | |
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache() | |
dreamo_generator_singleton.to_gpu() | |
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32 | |
keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path | |
for i, scene_description in enumerate(storyboard): | |
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}") | |
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n" | |
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description) | |
reference_items = [] | |
fixed_references_basenames = [os.path.basename(item['image']) for item in ref_images_tasks if item['image']] | |
for item in ref_images_tasks: | |
if item['image']: | |
reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']}) | |
dynamic_references_paths = keyframe_paths[-3:] | |
for ref_path in dynamic_references_paths: | |
if os.path.basename(ref_path) not in fixed_references_basenames: | |
reference_items.append({'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': 'ip'}) | |
log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n" | |
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)} | |
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png") | |
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height) | |
image.save(output_path) | |
keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path | |
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)} | |
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}") | |
finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache() | |
log_history += "\nPintura de todos os keyframes concluída.\n" | |
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths} | |
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str): | |
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
try: | |
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc) | |
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path) | |
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt] | |
response = model.generate_content(model_contents) | |
return response.text.strip() | |
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}") | |
def get_dynamic_motion_prompt(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc): | |
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
try: | |
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/dynamic_motion_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc) | |
with imageio.get_reader(memory_media_path) as reader: | |
mem_img = Image.fromarray(reader.get_data(0)) | |
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path) | |
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt] | |
response = model.generate_content(model_contents) | |
return response.text.strip() | |
except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}") | |
def run_video_production( | |
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing, | |
fragment_duration_frames, mid_cond_strength, num_inference_steps, | |
prompt_geral, keyframe_images_state, scene_storyboard, cfg, | |
progress=gr.Progress() | |
): | |
video_total_frames = int(video_duration_seconds * video_fps) | |
if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.") | |
if int(fragment_duration_frames) > video_total_frames: | |
raise gr.Error(f"A 'Duração de Cada Fragmento' ({fragment_duration_frames} frames) não pode ser maior que a 'Duração da Geração Bruta' ({video_total_frames} frames).") | |
log_history = "\n--- FASE 3/4: Iniciando Produção (Eco + Déjà Vu)...\n" | |
yield { | |
production_log_output: log_history, | |
video_gallery_glitch: [], | |
prod_media_start_output: gr.update(value=None), | |
prod_media_mid_output: gr.update(value=None, visible=False), | |
prod_media_end_output: gr.update(value=None), | |
} | |
seed = int(time.time()) | |
target_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
try: | |
pipeline_instance.to(target_device) | |
video_fragments, story_history = [], ""; kinetic_memory_path = None | |
with Image.open(keyframe_images_state[1]) as img: width, height = img.size | |
num_transitions = len(keyframe_images_state) - 2 | |
for i in range(num_transitions): | |
fragment_num = i + 1 | |
progress(i / num_transitions, desc=f"Preparando Fragmento {fragment_num}...") | |
log_history += f"\n--- FRAGMENTO {fragment_num}/{num_transitions} ---\n" | |
if i == 0: | |
start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2] | |
dest_scene_desc = scene_storyboard[1] | |
log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n" | |
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc) | |
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, int(video_total_frames), 1.0)] | |
yield { | |
production_log_output: gr.update(value=log_history), | |
prod_media_start_output: gr.update(value=start_path), | |
prod_media_mid_output: gr.update(value=None, visible=False), | |
prod_media_end_output: gr.update(value=destination_path), | |
} | |
else: | |
memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2] | |
path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1] | |
log_history += f" - Memória Cinética (Vídeo): {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n" | |
mid_cond_frame_calculated = int(video_total_frames - fragment_duration_frames + eco_video_frames) | |
log_history += f" - Frame de Condicionamento do 'Caminho' calculado: {mid_cond_frame_calculated}\n" | |
current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc) | |
conditioning_items_data = [(memory_path, 0, 1.0), (path_path, mid_cond_frame_calculated, mid_cond_strength), (destination_path, int(video_total_frames), 1.0)] | |
yield { | |
production_log_output: gr.update(value=log_history), | |
prod_media_start_output: gr.update(value=memory_path), | |
prod_media_mid_output: gr.update(value=path_path, visible=True), | |
prod_media_end_output: gr.update(value=destination_path), | |
} | |
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}" | |
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history} | |
progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}...") | |
full_fragment_path, actual_frames_generated = run_ltx_animation( | |
current_fragment_index=fragment_num, motion_prompt=current_motion_prompt, | |
conditioning_items_data=conditioning_items_data, width=width, height=height, | |
seed=seed, cfg=cfg, progress=progress, | |
video_total_frames=video_total_frames, video_fps=video_fps, | |
use_attention_slicing=use_attention_slicing, num_inference_steps=num_inference_steps | |
) | |
log_history += f" - LOG: Gerei o fragmento_{fragment_num} bruto com {actual_frames_generated} frames.\n" | |
yield {production_log_output: log_history} | |
trimmed_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4") | |
trim_video_to_frames(full_fragment_path, trimmed_fragment_path, int(fragment_duration_frames)) | |
log_history += f" - LOG: Reduzi o fragmento_{fragment_num} para {int(fragment_duration_frames)} frames.\n" | |
yield {production_log_output: log_history} | |
is_last_fragment = (i == num_transitions - 1) | |
if not is_last_fragment: | |
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4") | |
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames)) | |
log_history += f" - LOG: Gerei o eco com {int(eco_video_frames)} frames a partir do final do fragmento reduzido.\n" | |
log_history += f" - Novo Eco Cinético (Vídeo) criado: {os.path.basename(kinetic_memory_path)}\n" | |
else: | |
log_history += f" - Este é o último fragmento, não é necessário gerar um eco.\n" | |
video_fragments.append(trimmed_fragment_path) | |
yield {production_log_output: log_history, video_gallery_glitch: video_fragments} | |
progress(1.0, desc="Produção Concluída.") | |
log_history += "\nProdução de todos os fragmentos concluída.\n" | |
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments} | |
finally: | |
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache() | |
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str: | |
if not image_path: return None | |
try: | |
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS) | |
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path) | |
return output_path | |
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}") | |
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor: | |
if media_path.lower().endswith(('.mp4', '.mov', '.avi')): | |
with imageio.get_reader(media_path) as reader: | |
first_frame_np = reader.get_data(0) | |
temp_img_path = os.path.join(WORKSPACE_DIR, f"temp_frame_from_{os.path.basename(media_path)}.png") | |
Image.fromarray(first_frame_np).save(temp_img_path) | |
return load_image_to_tensor_with_resize_and_crop(temp_img_path, height, width) | |
else: | |
return load_image_to_tensor_with_resize_and_crop(media_path, height, width) | |
def run_ltx_animation( | |
current_fragment_index, motion_prompt, conditioning_items_data, | |
width, height, seed, cfg, progress, | |
video_total_frames, video_fps, use_attention_slicing, num_inference_steps | |
): | |
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}..."); | |
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
try: | |
pipeline_instance.to(target_device) | |
if use_attention_slicing: pipeline_instance.enable_attention_slicing() | |
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data] | |
actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1) | |
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 | |
padding_vals = calculate_padding(height, width, padded_h, padded_w) | |
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals) | |
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() | |
first_pass_config['num_inference_steps'] = int(num_inference_steps) | |
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)} | |
result_tensor = pipeline_instance(**kwargs).images | |
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None | |
cropped_tensor = result_tensor[:, :, :actual_num_frames, pad_t:slice_h, pad_l:slice_w] | |
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) | |
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer: | |
for i, frame in enumerate(video_np): writer.append_data(frame) | |
return output_path, actual_num_frames | |
finally: | |
if use_attention_slicing: pipeline_instance.disable_attention_slicing() | |
pipeline_instance.to('cpu') | |
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str: | |
try: | |
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True) | |
return output_path | |
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}") | |
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str: | |
try: | |
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\"" | |
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True) | |
total_frames = int(result.stdout.strip()) | |
if n_frames >= total_frames: | |
shutil.copyfile(input_path, output_path) | |
return output_path | |
start_frame = total_frames - n_frames | |
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\"" | |
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True) | |
return output_path | |
except (subprocess.CalledProcessError, ValueError) as e: | |
raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}") | |
def concatenate_and_trim_masterpiece(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()): | |
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.") | |
progress(0.1, desc="Preparando fragmentos para montagem final..."); | |
try: | |
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt") | |
final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4") | |
temp_files_for_concat = [] | |
final_clip_len = int(fragment_duration_frames - eco_video_frames) | |
for i, p in enumerate(fragment_paths): | |
if i == len(fragment_paths) - 1: | |
temp_files_for_concat.append(os.path.abspath(p)) | |
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Mantendo último fragmento: {os.path.basename(p)}") | |
else: | |
temp_path = os.path.join(WORKSPACE_DIR, f"temp_concat_{i}.mp4") | |
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Cortando {os.path.basename(p)} para {final_clip_len} frames") | |
trim_video_to_frames(p, temp_path, final_clip_len) | |
temp_files_for_concat.append(temp_path) | |
progress(0.9, desc="Concatenando clipes...") | |
with open(list_file_path, "w") as f: | |
for p_temp in temp_files_for_concat: | |
f.write(f"file '{p_temp}'\n") | |
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True) | |
progress(1.0, desc="Montagem concluída!") | |
return final_output_path | |
except subprocess.CalledProcessError as e: | |
raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}") | |
# --- Ato 5: A Interface com o Mundo (UI) --- | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# NOVIM-6.0 (Painel de Controle do Diretor)\n*By Carlex & Gemini & DreamO*") | |
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR) | |
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True) | |
scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([]) | |
prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("") | |
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)") | |
num_fragments_input = gr.Slider(2, 5, 4, step=1, label="Número de Atos (Keyframes)") | |
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})") | |
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary") | |
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)") | |
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown("Forneça referências para guiar a IA. A Principal é obrigatória. A Secundária é opcional (ex: para estilo ou uma segunda pessoa).") | |
with gr.Row(): | |
with gr.Column(): | |
ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath") | |
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal") | |
with gr.Column(): | |
ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath") | |
ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária") | |
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary") | |
with gr.Column(scale=1): | |
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False) | |
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath") | |
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG") | |
with gr.Accordion("Controles Avançados de Timing e Performance", open=False): | |
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (segundos)", minimum=2.0, maximum=10.0, value=6.0, step=0.5) | |
video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=30, value=30, step=1) | |
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência", minimum=10, maximum=50, value=30, step=1) | |
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True) | |
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Arquitetura Eco + Déjà Vu)") | |
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (Frames)", minimum=30, maximum=300, value=90, step=1) | |
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1) | |
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05) | |
gr.Markdown( | |
""" | |
**Instruções (Nova Arquitetura):** | |
- **Duração da Geração Bruta:** Tempo total que a IA tem para criar a transição. Deve ser MAIOR que a Duração do Fragmento. | |
- **Duração de Cada Fragmento:** O comprimento final de cada clipe de vídeo que será gerado. | |
- **Tamanho do Eco Cinético:** Quantos frames do *final* de um fragmento serão passados para o próximo para garantir continuidade. | |
- **Força do Caminho:** Define o quão forte a imagem-chave intermediária ('Caminho') influencia a transição. | |
""" | |
) | |
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary") | |
with gr.Accordion("Visualização das Mídias de Condicionamento (Ao Vivo)", open=True): | |
with gr.Row(): | |
prod_media_start_output = gr.Video(label="Mídia Inicial (Eco/K1)", interactive=False) | |
prod_media_mid_output = gr.Image(label="Mídia do Caminho (K_i-1)", interactive=False, visible=False) | |
prod_media_end_output = gr.Image(label="Mídia de Destino (K_i)", interactive=False) | |
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False) | |
with gr.Column(scale=1): video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados (Versões Cortadas)", object_fit="contain", height="auto", type="video") | |
fragment_duration_state = gr.State() | |
eco_frames_state = gr.State() | |
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)") | |
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary") | |
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION) | |
gr.Markdown( | |
""" | |
--- | |
### A Arquitetura: Eco + Déjà Vu | |
A geração começa com um "Big Bang" entre os dois primeiros keyframes. A partir daí, a mágica acontece. | |
* **O Eco (A Memória Física):** No final de cada cena, os últimos frames são capturados e salvos como um pequeno vídeo, o `Eco`. Ele carrega a "energia cinética" do movimento, iluminação e atmosfera da cena que acabou. | |
* **O Déjà Vu (A Memória Conceitual):** Para criar a próxima cena, o Cineasta de IA (Gemini) assiste ao `Eco`, olha para o keyframe do "caminho" e o keyframe do "destino". Com essa visão tripla, ele tem um "déjà vu", uma memória do que acabou de acontecer que o inspira a escrever uma instrução de câmera precisa para conectar o passado ao futuro de forma fluida e coerente. | |
""" | |
) | |
# --- Ato 6: A Regência (Lógica de Conexão dos Botões) --- | |
def process_and_update_storyboard(num_fragments, prompt, image_path): | |
processed_path = process_image_to_square(image_path) | |
if not processed_path: raise gr.Error("A imagem de referência é inválida ou não foi fornecida.") | |
storyboard = run_storyboard_generation(num_fragments, prompt, processed_path) | |
return storyboard, prompt, processed_path | |
director_button.click( | |
fn=process_and_update_storyboard, | |
inputs=[num_fragments_input, prompt_input, image_input], | |
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state] | |
).success( | |
fn=lambda s, p: (s, p), | |
inputs=[scene_storyboard_state, processed_ref_path_state], | |
outputs=[storyboard_to_show, ref1_image] | |
) | |
def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()): | |
ref_data = [ | |
{'image': ref1_img, 'task': ref1_tsk}, | |
{'image': ref2_img, 'task': ref2_tsk} | |
] | |
yield from run_keyframe_generation(storyboard, ref_data, progress) | |
animator_button.click( | |
fn=lambda frag_dur, eco_dur: (frag_dur, eco_dur), | |
inputs=[fragment_duration_slider, eco_frames_slider], | |
outputs=[fragment_duration_state, eco_frames_state] | |
).then( | |
fn=run_video_production, | |
inputs=[ | |
video_duration_slider, video_fps_slider, eco_frames_slider, slicing_checkbox, | |
fragment_duration_slider, mid_cond_strength_slider, | |
num_inference_steps_slider, | |
prompt_geral_state, keyframe_images_state, scene_storyboard_state, cfg_slider | |
], | |
outputs=[ | |
production_log_output, video_gallery_glitch, fragment_list_state, | |
prod_media_start_output, prod_media_mid_output, prod_media_end_output | |
] | |
) | |
editor_button.click( | |
fn=concatenate_and_trim_masterpiece, | |
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state], | |
outputs=[final_video_output] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(server_name="0.0.0.0", share=True) |