CarlDennis commited on
Commit
d930560
1 Parent(s): e133c3b

CarlDennis

Browse files
__pycache__/app.cpython-37.pyc ADDED
Binary file (5.42 kB). View file
__pycache__/attentions.cpython-37.pyc ADDED
Binary file (9.62 kB). View file
__pycache__/commons.cpython-37.pyc ADDED
Binary file (3.28 kB). View file
__pycache__/models.cpython-37.pyc ADDED
Binary file (14.3 kB). View file
__pycache__/modules.cpython-37.pyc ADDED
Binary file (11.5 kB). View file
__pycache__/transforms.cpython-37.pyc ADDED
Binary file (3.85 kB). View file
__pycache__/utils.cpython-37.pyc ADDED
Binary file (2.75 kB). View file
app.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import gradio as gr
3
+ import torch
4
+ import unicodedata
5
+ import commons
6
+ import utils
7
+ from models import SynthesizerTrn
8
+ from text import text_to_sequence
9
+
10
+ config_json = "muse_tricolor_b.json"
11
+ pth_path = "G=496.pth"
12
+
13
+
14
+ def get_text(text, hps, cleaned=False):
15
+ if cleaned:
16
+ text_norm = text_to_sequence(text, hps.symbols, [])
17
+ else:
18
+ text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
19
+ if hps.data.add_blank:
20
+ text_norm = commons.intersperse(text_norm, 0)
21
+ text_norm = torch.LongTensor(text_norm)
22
+ return text_norm
23
+
24
+
25
+ def get_label(text, label):
26
+ if f'[{label}]' in text:
27
+ return True, text.replace(f'[{label}]', '')
28
+ else:
29
+ return False, text
30
+
31
+
32
+ def clean_text(text):
33
+ print(text)
34
+ jap = re.compile(r'[\u3040-\u309F\u30A0-\u30FF]') # 匹配日文
35
+ text = unicodedata.normalize('NFKC', text)
36
+ text = f"[JA]{text}[JA]" if jap.search(text) else f"[ZH]{text}[ZH]"
37
+ return text
38
+
39
+
40
+ def load_model(config_json, pth_path):
41
+ dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
42
+ hps_ms = utils.get_hparams_from_file(f"{config_json}")
43
+ n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
44
+ n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
45
+ net_g_ms = SynthesizerTrn(
46
+ n_symbols,
47
+ hps_ms.data.filter_length // 2 + 1,
48
+ hps_ms.train.segment_size // hps_ms.data.hop_length,
49
+ n_speakers=n_speakers,
50
+ **hps_ms.model).to(dev)
51
+ _ = net_g_ms.eval()
52
+ _ = utils.load_checkpoint(pth_path, net_g_ms)
53
+ return net_g_ms
54
+
55
+ net_g_ms = load_model(config_json, pth_path)
56
+
57
+ def selection(speaker):
58
+ if speaker == "南小鸟":
59
+ spk = 0
60
+ return spk
61
+
62
+ elif speaker == "园田海未":
63
+ spk = 1
64
+ return spk
65
+
66
+ elif speaker == "小泉花阳":
67
+ spk = 2
68
+ return spk
69
+
70
+ elif speaker == "星空凛":
71
+ spk = 3
72
+ return spk
73
+
74
+ elif speaker == "东条希":
75
+ spk = 4
76
+ return spk
77
+
78
+ elif speaker == "矢泽妮可":
79
+ spk = 5
80
+ return spk
81
+
82
+ elif speaker == "绚濑绘里":
83
+ spk = 6
84
+ return spk
85
+
86
+ elif speaker == "西木野真姬":
87
+ spk = 7
88
+ return spk
89
+
90
+ elif speaker == "高坂穗乃果":
91
+ spk = 8
92
+ return spk
93
+
94
+ def infer(text,speaker_id):
95
+ text = clean_text(text)
96
+ speaker_id = int(selection(speaker_id))
97
+ dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
98
+ hps_ms = utils.get_hparams_from_file(f"{config_json}")
99
+ with torch.no_grad():
100
+ stn_tst = get_text(text, hps_ms, cleaned=False)
101
+ x_tst = stn_tst.unsqueeze(0).to(dev)
102
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
103
+ sid = torch.LongTensor([speaker_id]).to(dev)
104
+ audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1)[0][
105
+ 0, 0].data.cpu().float().numpy()
106
+ return (hps_ms.data.sampling_rate, audio)
107
+
108
+ idols = ["南小鸟","园田海未","小泉花阳","星空凛","东条希","矢泽妮可","绚濑绘里","西木野真姬","高坂穗乃果"]
109
+ app = gr.Blocks()
110
+ with app:
111
+ with gr.Tabs():
112
+
113
+ with gr.TabItem("Basic"):
114
+
115
+ tts_input1 = gr.TextArea(label="请输入纯中文或纯日文", value="大家好")
116
+ speaker1 = gr.Dropdown(label="选择说话人",choices=idols, value="高坂穗乃果", interactive=True)
117
+ tts_submit = gr.Button("Generate", variant="primary")
118
+ tts_output2 = gr.Audio(label="Output")
119
+ tts_submit.click(infer, [tts_input1,speaker1], [tts_output2])
120
+ app.launch()
attentions.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ from modules import LayerNorm
8
+
9
+
10
+ class Encoder(nn.Module):
11
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
12
+ super().__init__()
13
+ self.hidden_channels = hidden_channels
14
+ self.filter_channels = filter_channels
15
+ self.n_heads = n_heads
16
+ self.n_layers = n_layers
17
+ self.kernel_size = kernel_size
18
+ self.p_dropout = p_dropout
19
+ self.window_size = window_size
20
+
21
+ self.drop = nn.Dropout(p_dropout)
22
+ self.attn_layers = nn.ModuleList()
23
+ self.norm_layers_1 = nn.ModuleList()
24
+ self.ffn_layers = nn.ModuleList()
25
+ self.norm_layers_2 = nn.ModuleList()
26
+ for i in range(self.n_layers):
27
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
28
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
29
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
30
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
31
+
32
+ def forward(self, x, x_mask):
33
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
34
+ x = x * x_mask
35
+ for i in range(self.n_layers):
36
+ y = self.attn_layers[i](x, x, attn_mask)
37
+ y = self.drop(y)
38
+ x = self.norm_layers_1[i](x + y)
39
+
40
+ y = self.ffn_layers[i](x, x_mask)
41
+ y = self.drop(y)
42
+ x = self.norm_layers_2[i](x + y)
43
+ x = x * x_mask
44
+ return x
45
+
46
+
47
+ class Decoder(nn.Module):
48
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
49
+ super().__init__()
50
+ self.hidden_channels = hidden_channels
51
+ self.filter_channels = filter_channels
52
+ self.n_heads = n_heads
53
+ self.n_layers = n_layers
54
+ self.kernel_size = kernel_size
55
+ self.p_dropout = p_dropout
56
+ self.proximal_bias = proximal_bias
57
+ self.proximal_init = proximal_init
58
+
59
+ self.drop = nn.Dropout(p_dropout)
60
+ self.self_attn_layers = nn.ModuleList()
61
+ self.norm_layers_0 = nn.ModuleList()
62
+ self.encdec_attn_layers = nn.ModuleList()
63
+ self.norm_layers_1 = nn.ModuleList()
64
+ self.ffn_layers = nn.ModuleList()
65
+ self.norm_layers_2 = nn.ModuleList()
66
+ for i in range(self.n_layers):
67
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
68
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
69
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
70
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
71
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
72
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
73
+
74
+ def forward(self, x, x_mask, h, h_mask):
75
+ """
76
+ x: decoder input
77
+ h: encoder output
78
+ """
79
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
80
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
81
+ x = x * x_mask
82
+ for i in range(self.n_layers):
83
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
84
+ y = self.drop(y)
85
+ x = self.norm_layers_0[i](x + y)
86
+
87
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
88
+ y = self.drop(y)
89
+ x = self.norm_layers_1[i](x + y)
90
+
91
+ y = self.ffn_layers[i](x, x_mask)
92
+ y = self.drop(y)
93
+ x = self.norm_layers_2[i](x + y)
94
+ x = x * x_mask
95
+ return x
96
+
97
+
98
+ class MultiHeadAttention(nn.Module):
99
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
100
+ super().__init__()
101
+ assert channels % n_heads == 0
102
+
103
+ self.channels = channels
104
+ self.out_channels = out_channels
105
+ self.n_heads = n_heads
106
+ self.p_dropout = p_dropout
107
+ self.window_size = window_size
108
+ self.heads_share = heads_share
109
+ self.block_length = block_length
110
+ self.proximal_bias = proximal_bias
111
+ self.proximal_init = proximal_init
112
+ self.attn = None
113
+
114
+ self.k_channels = channels // n_heads
115
+ self.conv_q = nn.Conv1d(channels, channels, 1)
116
+ self.conv_k = nn.Conv1d(channels, channels, 1)
117
+ self.conv_v = nn.Conv1d(channels, channels, 1)
118
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
119
+ self.drop = nn.Dropout(p_dropout)
120
+
121
+ if window_size is not None:
122
+ n_heads_rel = 1 if heads_share else n_heads
123
+ rel_stddev = self.k_channels**-0.5
124
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
125
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
126
+
127
+ nn.init.xavier_uniform_(self.conv_q.weight)
128
+ nn.init.xavier_uniform_(self.conv_k.weight)
129
+ nn.init.xavier_uniform_(self.conv_v.weight)
130
+ if proximal_init:
131
+ with torch.no_grad():
132
+ self.conv_k.weight.copy_(self.conv_q.weight)
133
+ self.conv_k.bias.copy_(self.conv_q.bias)
134
+
135
+ def forward(self, x, c, attn_mask=None):
136
+ q = self.conv_q(x)
137
+ k = self.conv_k(c)
138
+ v = self.conv_v(c)
139
+
140
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
141
+
142
+ x = self.conv_o(x)
143
+ return x
144
+
145
+ def attention(self, query, key, value, mask=None):
146
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
147
+ b, d, t_s, t_t = (*key.size(), query.size(2))
148
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
149
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
150
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
151
+
152
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
153
+ if self.window_size is not None:
154
+ assert t_s == t_t, "Relative attention is only available for self-attention."
155
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
156
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
157
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
158
+ scores = scores + scores_local
159
+ if self.proximal_bias:
160
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
161
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
162
+ if mask is not None:
163
+ scores = scores.masked_fill(mask == 0, -1e4)
164
+ if self.block_length is not None:
165
+ assert t_s == t_t, "Local attention is only available for self-attention."
166
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
167
+ scores = scores.masked_fill(block_mask == 0, -1e4)
168
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
169
+ p_attn = self.drop(p_attn)
170
+ output = torch.matmul(p_attn, value)
171
+ if self.window_size is not None:
172
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
173
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
174
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
175
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
176
+ return output, p_attn
177
+
178
+ def _matmul_with_relative_values(self, x, y):
179
+ """
180
+ x: [b, h, l, m]
181
+ y: [h or 1, m, d]
182
+ ret: [b, h, l, d]
183
+ """
184
+ ret = torch.matmul(x, y.unsqueeze(0))
185
+ return ret
186
+
187
+ def _matmul_with_relative_keys(self, x, y):
188
+ """
189
+ x: [b, h, l, d]
190
+ y: [h or 1, m, d]
191
+ ret: [b, h, l, m]
192
+ """
193
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
194
+ return ret
195
+
196
+ def _get_relative_embeddings(self, relative_embeddings, length):
197
+ max_relative_position = 2 * self.window_size + 1
198
+ # Pad first before slice to avoid using cond ops.
199
+ pad_length = max(length - (self.window_size + 1), 0)
200
+ slice_start_position = max((self.window_size + 1) - length, 0)
201
+ slice_end_position = slice_start_position + 2 * length - 1
202
+ if pad_length > 0:
203
+ padded_relative_embeddings = F.pad(
204
+ relative_embeddings,
205
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
206
+ else:
207
+ padded_relative_embeddings = relative_embeddings
208
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
209
+ return used_relative_embeddings
210
+
211
+ def _relative_position_to_absolute_position(self, x):
212
+ """
213
+ x: [b, h, l, 2*l-1]
214
+ ret: [b, h, l, l]
215
+ """
216
+ batch, heads, length, _ = x.size()
217
+ # Concat columns of pad to shift from relative to absolute indexing.
218
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
219
+
220
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
221
+ x_flat = x.view([batch, heads, length * 2 * length])
222
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
223
+
224
+ # Reshape and slice out the padded elements.
225
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
226
+ return x_final
227
+
228
+ def _absolute_position_to_relative_position(self, x):
229
+ """
230
+ x: [b, h, l, l]
231
+ ret: [b, h, l, 2*l-1]
232
+ """
233
+ batch, heads, length, _ = x.size()
234
+ # padd along column
235
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
236
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
237
+ # add 0's in the beginning that will skew the elements after reshape
238
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
239
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
240
+ return x_final
241
+
242
+ def _attention_bias_proximal(self, length):
243
+ """Bias for self-attention to encourage attention to close positions.
244
+ Args:
245
+ length: an integer scalar.
246
+ Returns:
247
+ a Tensor with shape [1, 1, length, length]
248
+ """
249
+ r = torch.arange(length, dtype=torch.float32)
250
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
251
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
252
+
253
+
254
+ class FFN(nn.Module):
255
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
256
+ super().__init__()
257
+ self.in_channels = in_channels
258
+ self.out_channels = out_channels
259
+ self.filter_channels = filter_channels
260
+ self.kernel_size = kernel_size
261
+ self.p_dropout = p_dropout
262
+ self.activation = activation
263
+ self.causal = causal
264
+
265
+ if causal:
266
+ self.padding = self._causal_padding
267
+ else:
268
+ self.padding = self._same_padding
269
+
270
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
271
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
272
+ self.drop = nn.Dropout(p_dropout)
273
+
274
+ def forward(self, x, x_mask):
275
+ x = self.conv_1(self.padding(x * x_mask))
276
+ if self.activation == "gelu":
277
+ x = x * torch.sigmoid(1.702 * x)
278
+ else:
279
+ x = torch.relu(x)
280
+ x = self.drop(x)
281
+ x = self.conv_2(self.padding(x * x_mask))
282
+ return x * x_mask
283
+
284
+ def _causal_padding(self, x):
285
+ if self.kernel_size == 1:
286
+ return x
287
+ pad_l = self.kernel_size - 1
288
+ pad_r = 0
289
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
290
+ x = F.pad(x, commons.convert_pad_shape(padding))
291
+ return x
292
+
293
+ def _same_padding(self, x):
294
+ if self.kernel_size == 1:
295
+ return x
296
+ pad_l = (self.kernel_size - 1) // 2
297
+ pad_r = self.kernel_size // 2
298
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
299
+ x = F.pad(x, commons.convert_pad_shape(padding))
300
+ return x
commons.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+ import torch.jit
5
+
6
+
7
+ def script_method(fn, _rcb=None):
8
+ return fn
9
+
10
+
11
+ def script(obj, optimize=True, _frames_up=0, _rcb=None):
12
+ return obj
13
+
14
+
15
+ torch.jit.script_method = script_method
16
+ torch.jit.script = script
17
+
18
+
19
+ def init_weights(m, mean=0.0, std=0.01):
20
+ classname = m.__class__.__name__
21
+ if classname.find("Conv") != -1:
22
+ m.weight.data.normal_(mean, std)
23
+
24
+
25
+ def get_padding(kernel_size, dilation=1):
26
+ return int((kernel_size*dilation - dilation)/2)
27
+
28
+
29
+ def intersperse(lst, item):
30
+ result = [item] * (len(lst) * 2 + 1)
31
+ result[1::2] = lst
32
+ return result
33
+
34
+
35
+ def slice_segments(x, ids_str, segment_size=4):
36
+ ret = torch.zeros_like(x[:, :, :segment_size])
37
+ for i in range(x.size(0)):
38
+ idx_str = ids_str[i]
39
+ idx_end = idx_str + segment_size
40
+ ret[i] = x[i, :, idx_str:idx_end]
41
+ return ret
42
+
43
+
44
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
45
+ b, d, t = x.size()
46
+ if x_lengths is None:
47
+ x_lengths = t
48
+ ids_str_max = x_lengths - segment_size + 1
49
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
50
+ ret = slice_segments(x, ids_str, segment_size)
51
+ return ret, ids_str
52
+
53
+
54
+ def subsequent_mask(length):
55
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
56
+ return mask
57
+
58
+
59
+ @torch.jit.script
60
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
61
+ n_channels_int = n_channels[0]
62
+ in_act = input_a + input_b
63
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
64
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
65
+ acts = t_act * s_act
66
+ return acts
67
+
68
+
69
+ def convert_pad_shape(pad_shape):
70
+ l = pad_shape[::-1]
71
+ pad_shape = [item for sublist in l for item in sublist]
72
+ return pad_shape
73
+
74
+
75
+ def sequence_mask(length, max_length=None):
76
+ if max_length is None:
77
+ max_length = length.max()
78
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
79
+ return x.unsqueeze(0) < length.unsqueeze(1)
80
+
81
+
82
+ def generate_path(duration, mask):
83
+ """
84
+ duration: [b, 1, t_x]
85
+ mask: [b, 1, t_y, t_x]
86
+ """
87
+ device = duration.device
88
+
89
+ b, _, t_y, t_x = mask.shape
90
+ cum_duration = torch.cumsum(duration, -1)
91
+
92
+ cum_duration_flat = cum_duration.view(b * t_x)
93
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
94
+ path = path.view(b, t_x, t_y)
95
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
96
+ path = path.unsqueeze(1).transpose(2,3) * mask
97
+ return path
jieba/dict.txt ADDED
The diff for this file is too large to render. See raw diff
models.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
6
+ from torch.nn import functional as F
7
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
8
+
9
+ import attentions
10
+ import commons
11
+ import modules
12
+ from commons import init_weights, get_padding
13
+
14
+
15
+ class StochasticDurationPredictor(nn.Module):
16
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
17
+ super().__init__()
18
+ filter_channels = in_channels # it needs to be removed from future version.
19
+ self.in_channels = in_channels
20
+ self.filter_channels = filter_channels
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.n_flows = n_flows
24
+ self.gin_channels = gin_channels
25
+
26
+ self.log_flow = modules.Log()
27
+ self.flows = nn.ModuleList()
28
+ self.flows.append(modules.ElementwiseAffine(2))
29
+ for i in range(n_flows):
30
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
31
+ self.flows.append(modules.Flip())
32
+
33
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
34
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
35
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
36
+ self.post_flows = nn.ModuleList()
37
+ self.post_flows.append(modules.ElementwiseAffine(2))
38
+ for i in range(4):
39
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
40
+ self.post_flows.append(modules.Flip())
41
+
42
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
43
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
44
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
45
+ if gin_channels != 0:
46
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
47
+
48
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
49
+ x = torch.detach(x)
50
+ x = self.pre(x)
51
+ if g is not None:
52
+ g = torch.detach(g)
53
+ x = x + self.cond(g)
54
+ x = self.convs(x, x_mask)
55
+ x = self.proj(x) * x_mask
56
+
57
+ if not reverse:
58
+ flows = self.flows
59
+ assert w is not None
60
+
61
+ logdet_tot_q = 0
62
+ h_w = self.post_pre(w)
63
+ h_w = self.post_convs(h_w, x_mask)
64
+ h_w = self.post_proj(h_w) * x_mask
65
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
66
+ z_q = e_q
67
+ for flow in self.post_flows:
68
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
69
+ logdet_tot_q += logdet_q
70
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
71
+ u = torch.sigmoid(z_u) * x_mask
72
+ z0 = (w - u) * x_mask
73
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
74
+ logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
75
+
76
+ logdet_tot = 0
77
+ z0, logdet = self.log_flow(z0, x_mask)
78
+ logdet_tot += logdet
79
+ z = torch.cat([z0, z1], 1)
80
+ for flow in flows:
81
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
82
+ logdet_tot = logdet_tot + logdet
83
+ nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
84
+ return nll + logq # [b]
85
+ else:
86
+ flows = list(reversed(self.flows))
87
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
88
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
89
+ for flow in flows:
90
+ z = flow(z, x_mask, g=x, reverse=reverse)
91
+ z0, z1 = torch.split(z, [1, 1], 1)
92
+ logw = z0
93
+ return logw
94
+
95
+
96
+ class DurationPredictor(nn.Module):
97
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
98
+ super().__init__()
99
+
100
+ self.in_channels = in_channels
101
+ self.filter_channels = filter_channels
102
+ self.kernel_size = kernel_size
103
+ self.p_dropout = p_dropout
104
+ self.gin_channels = gin_channels
105
+
106
+ self.drop = nn.Dropout(p_dropout)
107
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
108
+ self.norm_1 = modules.LayerNorm(filter_channels)
109
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
110
+ self.norm_2 = modules.LayerNorm(filter_channels)
111
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
112
+
113
+ if gin_channels != 0:
114
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
115
+
116
+ def forward(self, x, x_mask, g=None):
117
+ x = torch.detach(x)
118
+ if g is not None:
119
+ g = torch.detach(g)
120
+ x = x + self.cond(g)
121
+ x = self.conv_1(x * x_mask)
122
+ x = torch.relu(x)
123
+ x = self.norm_1(x)
124
+ x = self.drop(x)
125
+ x = self.conv_2(x * x_mask)
126
+ x = torch.relu(x)
127
+ x = self.norm_2(x)
128
+ x = self.drop(x)
129
+ x = self.proj(x * x_mask)
130
+ return x * x_mask
131
+
132
+
133
+ class TextEncoder(nn.Module):
134
+ def __init__(self,
135
+ n_vocab,
136
+ out_channels,
137
+ hidden_channels,
138
+ filter_channels,
139
+ n_heads,
140
+ n_layers,
141
+ kernel_size,
142
+ p_dropout):
143
+ super().__init__()
144
+ self.n_vocab = n_vocab
145
+ self.out_channels = out_channels
146
+ self.hidden_channels = hidden_channels
147
+ self.filter_channels = filter_channels
148
+ self.n_heads = n_heads
149
+ self.n_layers = n_layers
150
+ self.kernel_size = kernel_size
151
+ self.p_dropout = p_dropout
152
+
153
+ if self.n_vocab != 0:
154
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
155
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
156
+
157
+ self.encoder = attentions.Encoder(
158
+ hidden_channels,
159
+ filter_channels,
160
+ n_heads,
161
+ n_layers,
162
+ kernel_size,
163
+ p_dropout)
164
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
165
+
166
+ def forward(self, x, x_lengths):
167
+ if self.n_vocab != 0:
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class ResidualCouplingBlock(nn.Module):
180
+ def __init__(self,
181
+ channels,
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ n_flows=4,
187
+ gin_channels=0):
188
+ super().__init__()
189
+ self.channels = channels
190
+ self.hidden_channels = hidden_channels
191
+ self.kernel_size = kernel_size
192
+ self.dilation_rate = dilation_rate
193
+ self.n_layers = n_layers
194
+ self.n_flows = n_flows
195
+ self.gin_channels = gin_channels
196
+
197
+ self.flows = nn.ModuleList()
198
+ for i in range(n_flows):
199
+ self.flows.append(
200
+ modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
201
+ gin_channels=gin_channels, mean_only=True))
202
+ self.flows.append(modules.Flip())
203
+
204
+ def forward(self, x, x_mask, g=None, reverse=False):
205
+ if not reverse:
206
+ for flow in self.flows:
207
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
208
+ else:
209
+ for flow in reversed(self.flows):
210
+ x = flow(x, x_mask, g=g, reverse=reverse)
211
+ return x
212
+
213
+
214
+ class PosteriorEncoder(nn.Module):
215
+ def __init__(self,
216
+ in_channels,
217
+ out_channels,
218
+ hidden_channels,
219
+ kernel_size,
220
+ dilation_rate,
221
+ n_layers,
222
+ gin_channels=0):
223
+ super().__init__()
224
+ self.in_channels = in_channels
225
+ self.out_channels = out_channels
226
+ self.hidden_channels = hidden_channels
227
+ self.kernel_size = kernel_size
228
+ self.dilation_rate = dilation_rate
229
+ self.n_layers = n_layers
230
+ self.gin_channels = gin_channels
231
+
232
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
233
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
234
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
235
+
236
+ def forward(self, x, x_lengths, g=None):
237
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
238
+ x = self.pre(x) * x_mask
239
+ x = self.enc(x, x_mask, g=g)
240
+ stats = self.proj(x) * x_mask
241
+ m, logs = torch.split(stats, self.out_channels, dim=1)
242
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
243
+ return z, m, logs, x_mask
244
+
245
+
246
+ class Generator(torch.nn.Module):
247
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
248
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
249
+ super(Generator, self).__init__()
250
+ self.num_kernels = len(resblock_kernel_sizes)
251
+ self.num_upsamples = len(upsample_rates)
252
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
253
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
254
+
255
+ self.ups = nn.ModuleList()
256
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
257
+ self.ups.append(weight_norm(
258
+ ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
259
+ k, u, padding=(k - u) // 2)))
260
+
261
+ self.resblocks = nn.ModuleList()
262
+ for i in range(len(self.ups)):
263
+ ch = upsample_initial_channel // (2 ** (i + 1))
264
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
265
+ self.resblocks.append(resblock(ch, k, d))
266
+
267
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
268
+ self.ups.apply(init_weights)
269
+
270
+ if gin_channels != 0:
271
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
272
+
273
+ def forward(self, x, g=None):
274
+ x = self.conv_pre(x)
275
+ if g is not None:
276
+ x = x + self.cond(g)
277
+
278
+ for i in range(self.num_upsamples):
279
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
280
+ x = self.ups[i](x)
281
+ xs = None
282
+ for j in range(self.num_kernels):
283
+ if xs is None:
284
+ xs = self.resblocks[i * self.num_kernels + j](x)
285
+ else:
286
+ xs += self.resblocks[i * self.num_kernels + j](x)
287
+ x = xs / self.num_kernels
288
+ x = F.leaky_relu(x)
289
+ x = self.conv_post(x)
290
+ x = torch.tanh(x)
291
+
292
+ return x
293
+
294
+ def remove_weight_norm(self):
295
+ print('Removing weight norm...')
296
+ for l in self.ups:
297
+ remove_weight_norm(l)
298
+ for l in self.resblocks:
299
+ l.remove_weight_norm()
300
+
301
+
302
+ class DiscriminatorP(torch.nn.Module):
303
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
304
+ super(DiscriminatorP, self).__init__()
305
+ self.period = period
306
+ self.use_spectral_norm = use_spectral_norm
307
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
308
+ self.convs = nn.ModuleList([
309
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
311
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
312
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
313
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
314
+ ])
315
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
316
+
317
+ def forward(self, x):
318
+ fmap = []
319
+
320
+ # 1d to 2d
321
+ b, c, t = x.shape
322
+ if t % self.period != 0: # pad first
323
+ n_pad = self.period - (t % self.period)
324
+ x = F.pad(x, (0, n_pad), "reflect")
325
+ t = t + n_pad
326
+ x = x.view(b, c, t // self.period, self.period)
327
+
328
+ for l in self.convs:
329
+ x = l(x)
330
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
331
+ fmap.append(x)
332
+ x = self.conv_post(x)
333
+ fmap.append(x)
334
+ x = torch.flatten(x, 1, -1)
335
+
336
+ return x, fmap
337
+
338
+
339
+ class DiscriminatorS(torch.nn.Module):
340
+ def __init__(self, use_spectral_norm=False):
341
+ super(DiscriminatorS, self).__init__()
342
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
343
+ self.convs = nn.ModuleList([
344
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
345
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
346
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
347
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
348
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
349
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
350
+ ])
351
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
352
+
353
+ def forward(self, x):
354
+ fmap = []
355
+
356
+ for l in self.convs:
357
+ x = l(x)
358
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
359
+ fmap.append(x)
360
+ x = self.conv_post(x)
361
+ fmap.append(x)
362
+ x = torch.flatten(x, 1, -1)
363
+
364
+ return x, fmap
365
+
366
+
367
+ class MultiPeriodDiscriminator(torch.nn.Module):
368
+ def __init__(self, use_spectral_norm=False):
369
+ super(MultiPeriodDiscriminator, self).__init__()
370
+ periods = [2, 3, 5, 7, 11]
371
+
372
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
373
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
374
+ self.discriminators = nn.ModuleList(discs)
375
+
376
+ def forward(self, y, y_hat):
377
+ y_d_rs = []
378
+ y_d_gs = []
379
+ fmap_rs = []
380
+ fmap_gs = []
381
+ for i, d in enumerate(self.discriminators):
382
+ y_d_r, fmap_r = d(y)
383
+ y_d_g, fmap_g = d(y_hat)
384
+ y_d_rs.append(y_d_r)
385
+ y_d_gs.append(y_d_g)
386
+ fmap_rs.append(fmap_r)
387
+ fmap_gs.append(fmap_g)
388
+
389
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
390
+
391
+
392
+ class SynthesizerTrn(nn.Module):
393
+ """
394
+ Synthesizer for Training
395
+ """
396
+
397
+ def __init__(self,
398
+ n_vocab,
399
+ spec_channels,
400
+ segment_size,
401
+ inter_channels,
402
+ hidden_channels,
403
+ filter_channels,
404
+ n_heads,
405
+ n_layers,
406
+ kernel_size,
407
+ p_dropout,
408
+ resblock,
409
+ resblock_kernel_sizes,
410
+ resblock_dilation_sizes,
411
+ upsample_rates,
412
+ upsample_initial_channel,
413
+ upsample_kernel_sizes,
414
+ n_speakers=0,
415
+ gin_channels=0,
416
+ use_sdp=True,
417
+ **kwargs):
418
+
419
+ super().__init__()
420
+ self.n_vocab = n_vocab
421
+ self.spec_channels = spec_channels
422
+ self.inter_channels = inter_channels
423
+ self.hidden_channels = hidden_channels
424
+ self.filter_channels = filter_channels
425
+ self.n_heads = n_heads
426
+ self.n_layers = n_layers
427
+ self.kernel_size = kernel_size
428
+ self.p_dropout = p_dropout
429
+ self.resblock = resblock
430
+ self.resblock_kernel_sizes = resblock_kernel_sizes
431
+ self.resblock_dilation_sizes = resblock_dilation_sizes
432
+ self.upsample_rates = upsample_rates
433
+ self.upsample_initial_channel = upsample_initial_channel
434
+ self.upsample_kernel_sizes = upsample_kernel_sizes
435
+ self.segment_size = segment_size
436
+ self.n_speakers = n_speakers
437
+ self.gin_channels = gin_channels
438
+
439
+ self.use_sdp = use_sdp
440
+
441
+ self.enc_p = TextEncoder(n_vocab,
442
+ inter_channels,
443
+ hidden_channels,
444
+ filter_channels,
445
+ n_heads,
446
+ n_layers,
447
+ kernel_size,
448
+ p_dropout)
449
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
450
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
451
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
452
+ gin_channels=gin_channels)
453
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
454
+
455
+ if use_sdp:
456
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
457
+ else:
458
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
459
+
460
+ if n_speakers > 1:
461
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
462
+
463
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
464
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
465
+ if self.n_speakers > 0:
466
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
467
+ else:
468
+ g = None
469
+
470
+ if self.use_sdp:
471
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
472
+ else:
473
+ logw = self.dp(x, x_mask, g=g)
474
+ w = torch.exp(logw) * x_mask * length_scale
475
+ w_ceil = torch.ceil(w)
476
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
477
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
478
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
479
+ attn = commons.generate_path(w_ceil, attn_mask)
480
+
481
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
482
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
483
+ 2) # [b, t', t], [b, t, d] -> [b, d, t']
484
+
485
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
486
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
487
+ o = self.dec((z * y_mask)[:, :, :max_len], g=g)
488
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
489
+
490
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
491
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
492
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
493
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
494
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
495
+ z_p = self.flow(z, y_mask, g=g_src)
496
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
497
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
498
+ return o_hat, y_mask, (z, z_p, z_hat)
modules.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from torch.nn import Conv1d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+
13
+
14
+ LRELU_SLOPE = 0.1
15
+
16
+
17
+ class LayerNorm(nn.Module):
18
+ def __init__(self, channels, eps=1e-5):
19
+ super().__init__()
20
+ self.channels = channels
21
+ self.eps = eps
22
+
23
+ self.gamma = nn.Parameter(torch.ones(channels))
24
+ self.beta = nn.Parameter(torch.zeros(channels))
25
+
26
+ def forward(self, x):
27
+ x = x.transpose(1, -1)
28
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
29
+ return x.transpose(1, -1)
30
+
31
+
32
+ class ConvReluNorm(nn.Module):
33
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
34
+ super().__init__()
35
+ self.in_channels = in_channels
36
+ self.hidden_channels = hidden_channels
37
+ self.out_channels = out_channels
38
+ self.kernel_size = kernel_size
39
+ self.n_layers = n_layers
40
+ self.p_dropout = p_dropout
41
+ assert n_layers > 1, "Number of layers should be larger than 0."
42
+
43
+ self.conv_layers = nn.ModuleList()
44
+ self.norm_layers = nn.ModuleList()
45
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
46
+ self.norm_layers.append(LayerNorm(hidden_channels))
47
+ self.relu_drop = nn.Sequential(
48
+ nn.ReLU(),
49
+ nn.Dropout(p_dropout))
50
+ for _ in range(n_layers-1):
51
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
52
+ self.norm_layers.append(LayerNorm(hidden_channels))
53
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
54
+ self.proj.weight.data.zero_()
55
+ self.proj.bias.data.zero_()
56
+
57
+ def forward(self, x, x_mask):
58
+ x_org = x
59
+ for i in range(self.n_layers):
60
+ x = self.conv_layers[i](x * x_mask)
61
+ x = self.norm_layers[i](x)
62
+ x = self.relu_drop(x)
63
+ x = x_org + self.proj(x)
64
+ return x * x_mask
65
+
66
+
67
+ class DDSConv(nn.Module):
68
+ """
69
+ Dialted and Depth-Separable Convolution
70
+ """
71
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
72
+ super().__init__()
73
+ self.channels = channels
74
+ self.kernel_size = kernel_size
75
+ self.n_layers = n_layers
76
+ self.p_dropout = p_dropout
77
+
78
+ self.drop = nn.Dropout(p_dropout)
79
+ self.convs_sep = nn.ModuleList()
80
+ self.convs_1x1 = nn.ModuleList()
81
+ self.norms_1 = nn.ModuleList()
82
+ self.norms_2 = nn.ModuleList()
83
+ for i in range(n_layers):
84
+ dilation = kernel_size ** i
85
+ padding = (kernel_size * dilation - dilation) // 2
86
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
87
+ groups=channels, dilation=dilation, padding=padding
88
+ ))
89
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
90
+ self.norms_1.append(LayerNorm(channels))
91
+ self.norms_2.append(LayerNorm(channels))
92
+
93
+ def forward(self, x, x_mask, g=None):
94
+ if g is not None:
95
+ x = x + g
96
+ for i in range(self.n_layers):
97
+ y = self.convs_sep[i](x * x_mask)
98
+ y = self.norms_1[i](y)
99
+ y = F.gelu(y)
100
+ y = self.convs_1x1[i](y)
101
+ y = self.norms_2[i](y)
102
+ y = F.gelu(y)
103
+ y = self.drop(y)
104
+ x = x + y
105
+ return x * x_mask
106
+
107
+
108
+ class WN(torch.nn.Module):
109
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
110
+ super(WN, self).__init__()
111
+ assert(kernel_size % 2 == 1)
112
+ self.hidden_channels =hidden_channels
113
+ self.kernel_size = kernel_size,
114
+ self.dilation_rate = dilation_rate
115
+ self.n_layers = n_layers
116
+ self.gin_channels = gin_channels
117
+ self.p_dropout = p_dropout
118
+
119
+ self.in_layers = torch.nn.ModuleList()
120
+ self.res_skip_layers = torch.nn.ModuleList()
121
+ self.drop = nn.Dropout(p_dropout)
122
+
123
+ if gin_channels != 0:
124
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
125
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
126
+
127
+ for i in range(n_layers):
128
+ dilation = dilation_rate ** i
129
+ padding = int((kernel_size * dilation - dilation) / 2)
130
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
131
+ dilation=dilation, padding=padding)
132
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
133
+ self.in_layers.append(in_layer)
134
+
135
+ # last one is not necessary
136
+ if i < n_layers - 1:
137
+ res_skip_channels = 2 * hidden_channels
138
+ else:
139
+ res_skip_channels = hidden_channels
140
+
141
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
142
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
143
+ self.res_skip_layers.append(res_skip_layer)
144
+
145
+ def forward(self, x, x_mask, g=None, **kwargs):
146
+ output = torch.zeros_like(x)
147
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
148
+
149
+ if g is not None:
150
+ g = self.cond_layer(g)
151
+
152
+ for i in range(self.n_layers):
153
+ x_in = self.in_layers[i](x)
154
+ if g is not None:
155
+ cond_offset = i * 2 * self.hidden_channels
156
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
157
+ else:
158
+ g_l = torch.zeros_like(x_in)
159
+
160
+ acts = commons.fused_add_tanh_sigmoid_multiply(
161
+ x_in,
162
+ g_l,
163
+ n_channels_tensor)
164
+ acts = self.drop(acts)
165
+
166
+ res_skip_acts = self.res_skip_layers[i](acts)
167
+ if i < self.n_layers - 1:
168
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
169
+ x = (x + res_acts) * x_mask
170
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
171
+ else:
172
+ output = output + res_skip_acts
173
+ return output * x_mask
174
+
175
+ def remove_weight_norm(self):
176
+ if self.gin_channels != 0:
177
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
178
+ for l in self.in_layers:
179
+ torch.nn.utils.remove_weight_norm(l)
180
+ for l in self.res_skip_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
+
183
+
184
+ class ResBlock1(torch.nn.Module):
185
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
186
+ super(ResBlock1, self).__init__()
187
+ self.convs1 = nn.ModuleList([
188
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
189
+ padding=get_padding(kernel_size, dilation[0]))),
190
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
191
+ padding=get_padding(kernel_size, dilation[1]))),
192
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
193
+ padding=get_padding(kernel_size, dilation[2])))
194
+ ])
195
+ self.convs1.apply(init_weights)
196
+
197
+ self.convs2 = nn.ModuleList([
198
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
199
+ padding=get_padding(kernel_size, 1))),
200
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201
+ padding=get_padding(kernel_size, 1))),
202
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203
+ padding=get_padding(kernel_size, 1)))
204
+ ])
205
+ self.convs2.apply(init_weights)
206
+
207
+ def forward(self, x, x_mask=None):
208
+ for c1, c2 in zip(self.convs1, self.convs2):
209
+ xt = F.leaky_relu(x, LRELU_SLOPE)
210
+ if x_mask is not None:
211
+ xt = xt * x_mask
212
+ xt = c1(xt)
213
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
214
+ if x_mask is not None:
215
+ xt = xt * x_mask
216
+ xt = c2(xt)
217
+ x = xt + x
218
+ if x_mask is not None:
219
+ x = x * x_mask
220
+ return x
221
+
222
+ def remove_weight_norm(self):
223
+ for l in self.convs1:
224
+ remove_weight_norm(l)
225
+ for l in self.convs2:
226
+ remove_weight_norm(l)
227
+
228
+
229
+ class ResBlock2(torch.nn.Module):
230
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
231
+ super(ResBlock2, self).__init__()
232
+ self.convs = nn.ModuleList([
233
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
234
+ padding=get_padding(kernel_size, dilation[0]))),
235
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
236
+ padding=get_padding(kernel_size, dilation[1])))
237
+ ])
238
+ self.convs.apply(init_weights)
239
+
240
+ def forward(self, x, x_mask=None):
241
+ for c in self.convs:
242
+ xt = F.leaky_relu(x, LRELU_SLOPE)
243
+ if x_mask is not None:
244
+ xt = xt * x_mask
245
+ xt = c(xt)
246
+ x = xt + x
247
+ if x_mask is not None:
248
+ x = x * x_mask
249
+ return x
250
+
251
+ def remove_weight_norm(self):
252
+ for l in self.convs:
253
+ remove_weight_norm(l)
254
+
255
+
256
+ class Log(nn.Module):
257
+ def forward(self, x, x_mask, reverse=False, **kwargs):
258
+ if not reverse:
259
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
260
+ logdet = torch.sum(-y, [1, 2])
261
+ return y, logdet
262
+ else:
263
+ x = torch.exp(x) * x_mask
264
+ return x
265
+
266
+
267
+ class Flip(nn.Module):
268
+ def forward(self, x, *args, reverse=False, **kwargs):
269
+ x = torch.flip(x, [1])
270
+ if not reverse:
271
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
272
+ return x, logdet
273
+ else:
274
+ return x
275
+
276
+
277
+ class ElementwiseAffine(nn.Module):
278
+ def __init__(self, channels):
279
+ super().__init__()
280
+ self.channels = channels
281
+ self.m = nn.Parameter(torch.zeros(channels,1))
282
+ self.logs = nn.Parameter(torch.zeros(channels,1))
283
+
284
+ def forward(self, x, x_mask, reverse=False, **kwargs):
285
+ if not reverse:
286
+ y = self.m + torch.exp(self.logs) * x
287
+ y = y * x_mask
288
+ logdet = torch.sum(self.logs * x_mask, [1,2])
289
+ return y, logdet
290
+ else:
291
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
292
+ return x
293
+
294
+
295
+ class ResidualCouplingLayer(nn.Module):
296
+ def __init__(self,
297
+ channels,
298
+ hidden_channels,
299
+ kernel_size,
300
+ dilation_rate,
301
+ n_layers,
302
+ p_dropout=0,
303
+ gin_channels=0,
304
+ mean_only=False):
305
+ assert channels % 2 == 0, "channels should be divisible by 2"
306
+ super().__init__()
307
+ self.channels = channels
308
+ self.hidden_channels = hidden_channels
309
+ self.kernel_size = kernel_size
310
+ self.dilation_rate = dilation_rate
311
+ self.n_layers = n_layers
312
+ self.half_channels = channels // 2
313
+ self.mean_only = mean_only
314
+
315
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
316
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
317
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
318
+ self.post.weight.data.zero_()
319
+ self.post.bias.data.zero_()
320
+
321
+ def forward(self, x, x_mask, g=None, reverse=False):
322
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
323
+ h = self.pre(x0) * x_mask
324
+ h = self.enc(h, x_mask, g=g)
325
+ stats = self.post(h) * x_mask
326
+ if not self.mean_only:
327
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
328
+ else:
329
+ m = stats
330
+ logs = torch.zeros_like(m)
331
+
332
+ if not reverse:
333
+ x1 = m + x1 * torch.exp(logs) * x_mask
334
+ x = torch.cat([x0, x1], 1)
335
+ logdet = torch.sum(logs, [1,2])
336
+ return x, logdet
337
+ else:
338
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
339
+ x = torch.cat([x0, x1], 1)
340
+ return x
341
+
342
+
343
+ class ConvFlow(nn.Module):
344
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
345
+ super().__init__()
346
+ self.in_channels = in_channels
347
+ self.filter_channels = filter_channels
348
+ self.kernel_size = kernel_size
349
+ self.n_layers = n_layers
350
+ self.num_bins = num_bins
351
+ self.tail_bound = tail_bound
352
+ self.half_channels = in_channels // 2
353
+
354
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
355
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
356
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
357
+ self.proj.weight.data.zero_()
358
+ self.proj.bias.data.zero_()
359
+
360
+ def forward(self, x, x_mask, g=None, reverse=False):
361
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
362
+ h = self.pre(x0)
363
+ h = self.convs(h, x_mask, g=g)
364
+ h = self.proj(h) * x_mask
365
+
366
+ b, c, t = x0.shape
367
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
368
+
369
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
370
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
371
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
372
+
373
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
374
+ unnormalized_widths,
375
+ unnormalized_heights,
376
+ unnormalized_derivatives,
377
+ inverse=reverse,
378
+ tails='linear',
379
+ tail_bound=self.tail_bound
380
+ )
381
+
382
+ x = torch.cat([x0, x1], 1) * x_mask
383
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
384
+ if not reverse:
385
+ return x, logdet
386
+ else:
387
+ return x
muse_tricolor_b.json ADDED
@@ -0,0 +1 @@
 
1
+ {"data":{"add_blank":true,"cleaned_text":true,"cleaners":["custom_cleaners"],"filter_length":1024,"hop_length":256,"max_wav_value":32768.0,"mel_fmax":null,"mel_fmin":0.0,"n_mel_channels":80,"n_speakers":12,"sampling_rate":22050,"text_cleaners":["zh_ja_mixture_cleaners"],"training_files":"/root/content/vits/filelists/muse_tricolor_train.txt.cleaned","validation_files":"/root/content/vits/filelists/muse_tricolor_val.txt.cleaned","win_length":1024},"model":{"filter_channels":768,"gin_channels":256,"hidden_channels":192,"inter_channels":192,"kernel_size":3,"n_heads":2,"n_layers":6,"n_layers_q":3,"p_dropout":0.1,"resblock":"1","resblock_dilation_sizes":[[1,3,5],[1,3,5],[1,3,5]],"resblock_kernel_sizes":[3,7,11],"upsample_initial_channel":512,"upsample_kernel_sizes":[16,16,4,4],"upsample_rates":[8,8,2,2],"use_spectral_norm":false},"speakers":["Minami Kotori","Sonoda Umi","Koizumi Hanayo","Hoshizora Rin","Tojo Nozomi","Yazawa Nico","Ayase Eli","Nishikino Maki","Kosaka Honoka","WenZhi","MoXiaoju","Biaobei"],"symbols":["_",",",".","!","?","\u2026","~","_",".","!","?","-","~","\u2026","A","E","I","N","O","Q","U","a","b","d","e","f","g","h","i","j","k","l","m","n","o","p","r","s","t","u","v","w","y","z","\u0283","\u02a7","\u02a6","\u026f","\u0279","\u0259","\u0265","\u207c","\u02b0","`","\u2192","\u2193","\u2191"," "],"train":{"batch_size":32,"betas":[0.8,0.99],"c_kl":1.0,"c_mel":45,"epochs":1200,"eps":1e-09,"eval_interval":10000,"fp16_run":true,"init_lr_ratio":1,"learning_rate":0.0002,"log_interval":200,"lr_decay":0.999875,"seed":1234,"segment_size":8192,"warmup_epochs":0}}
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cython==0.29.21
2
+ librosa==0.8.0
3
+ matplotlib==3.3.1
4
+ numpy==1.21.6
5
+ phonemizer==2.2.1
6
+ scipy==1.5.2
7
+ tensorboard==2.3.0
8
+ torch
9
+ torchvision
10
+ Unidecode==1.1.1
11
+ pyopenjtalk==0.2.0
12
+ jamo==0.4.1
13
+ pypinyin==0.44.0
14
+ jieba==0.42.1
15
+ cn2an==0.5.17
16
+ jieba==0.42.1
17
+ ipython==7.34.0
18
+ gradio==3.4.1
text/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2017 Keith Ito
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ of this software and associated documentation files (the "Software"), to deal
5
+ in the Software without restriction, including without limitation the rights
6
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ copies of the Software, and to permit persons to whom the Software is
8
+ furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in
11
+ all copies or substantial portions of the Software.
12
+
13
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
+ THE SOFTWARE.
text/__init__.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ from text import cleaners
3
+
4
+
5
+ def text_to_sequence(text, symbols, cleaner_names):
6
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
7
+ Args:
8
+ text: string to convert to a sequence
9
+ cleaner_names: names of the cleaner functions to run the text through
10
+ Returns:
11
+ List of integers corresponding to the symbols in the text
12
+ '''
13
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
14
+
15
+ sequence = []
16
+
17
+ clean_text = _clean_text(text, cleaner_names)
18
+ for symbol in clean_text:
19
+ if symbol not in _symbol_to_id.keys():
20
+ continue
21
+ symbol_id = _symbol_to_id[symbol]
22
+ sequence += [symbol_id]
23
+ return sequence
24
+
25
+
26
+ def _clean_text(text, cleaner_names):
27
+ for name in cleaner_names:
28
+ cleaner = getattr(cleaners, name)
29
+ if not cleaner:
30
+ raise Exception('Unknown cleaner: %s' % name)
31
+ text = cleaner(text)
32
+ return text
text/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (1.21 kB). View file
text/__pycache__/cleaners.cpython-37.pyc ADDED
Binary file (2.97 kB). View file
text/__pycache__/japanese.cpython-37.pyc ADDED
Binary file (3.64 kB). View file
text/__pycache__/mandarin.cpython-37.pyc ADDED
Binary file (4.6 kB). View file
text/__pycache__/tz ADDED
@@ -0,0 +1 @@
 
1
+ s
text/cleaners.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+
4
+ def japanese_cleaners(text):
5
+ from text.japanese import japanese_to_romaji_with_accent
6
+ text = japanese_to_romaji_with_accent(text)
7
+ if re.match('[A-Za-z]', text[-1]):
8
+ text += '.'
9
+ return text
10
+
11
+
12
+ def japanese_cleaners2(text):
13
+ return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
14
+
15
+
16
+ def korean_cleaners(text):
17
+ '''Pipeline for Korean text'''
18
+ from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
19
+ text = latin_to_hangul(text)
20
+ text = number_to_hangul(text)
21
+ text = divide_hangul(text)
22
+ if re.match('[\u3131-\u3163]', text[-1]):
23
+ text += '.'
24
+ return text
25
+
26
+
27
+ def chinese_cleaners(text):
28
+ '''Pipeline for Chinese text'''
29
+ from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
30
+ text = number_to_chinese(text)
31
+ text = chinese_to_bopomofo(text)
32
+ text = latin_to_bopomofo(text)
33
+ if re.match('[ˉˊˇˋ˙]', text[-1]):
34
+ text += '。'
35
+ return text
36
+
37
+
38
+ def zh_ja_mixture_cleaners(text):
39
+ from text.mandarin import chinese_to_romaji
40
+ from text.japanese import japanese_to_romaji_with_accent
41
+ chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
42
+ japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
43
+ for chinese_text in chinese_texts:
44
+ cleaned_text = chinese_to_romaji(chinese_text[4:-4])
45
+ text = text.replace(chinese_text, cleaned_text+' ', 1)
46
+ for japanese_text in japanese_texts:
47
+ cleaned_text = japanese_to_romaji_with_accent(
48
+ japanese_text[4:-4]).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')
49
+ text = text.replace(japanese_text, cleaned_text+' ', 1)
50
+ text = text[:-1]
51
+ if re.match('[A-Za-zɯɹəɥ→↓↑]', text[-1]):
52
+ text += '.'
53
+ return text
54
+
55
+
56
+ def sanskrit_cleaners(text):
57
+ text = text.replace('॥', '।').replace('ॐ', 'ओम्')
58
+ if text[-1] != '।':
59
+ text += ' ।'
60
+ return text
61
+
62
+
63
+ def cjks_cleaners(text):
64
+ from text.mandarin import chinese_to_lazy_ipa
65
+ from text.japanese import japanese_to_ipa
66
+ from text.korean import korean_to_lazy_ipa
67
+ from text.sanskrit import devanagari_to_ipa
68
+ chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
69
+ japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
70
+ korean_texts = re.findall(r'\[KO\].*?\[KO\]', text)
71
+ sanskrit_texts = re.findall(r'\[SA\].*?\[SA\]', text)
72
+ for chinese_text in chinese_texts:
73
+ cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
74
+ text = text.replace(chinese_text, cleaned_text+' ', 1)
75
+ for japanese_text in japanese_texts:
76
+ cleaned_text = japanese_to_ipa(japanese_text[4:-4])
77
+ text = text.replace(japanese_text, cleaned_text+' ', 1)
78
+ for korean_text in korean_texts:
79
+ cleaned_text = korean_to_lazy_ipa(korean_text[4:-4])
80
+ text = text.replace(korean_text, cleaned_text+' ', 1)
81
+ for sanskrit_text in sanskrit_texts:
82
+ cleaned_text = devanagari_to_ipa(sanskrit_text[4:-4])
83
+ text = text.replace(sanskrit_text, cleaned_text+' ', 1)
84
+ text = text[:-1]
85
+ if re.match(r'[^\.,!\?\-…~]', text[-1]):
86
+ text += '.'
87
+ return text
text/japanese.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from unidecode import unidecode
3
+ import pyopenjtalk
4
+
5
+
6
+ # Regular expression matching Japanese without punctuation marks:
7
+ _japanese_characters = re.compile(
8
+ r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
9
+
10
+ # Regular expression matching non-Japanese characters or punctuation marks:
11
+ _japanese_marks = re.compile(
12
+ r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
13
+
14
+ # List of (symbol, Japanese) pairs for marks:
15
+ _symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
16
+ ('%', 'パーセント')
17
+ ]]
18
+
19
+ # List of (romaji, ipa) pairs for marks:
20
+ _romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
21
+ ('ts', 'ʦ'),
22
+ ('u', 'ɯ'),
23
+ ('...', '…'),
24
+ ('j', 'ʥ'),
25
+ ('y', 'j'),
26
+ ('ni', 'n^i'),
27
+ ('nj', 'n^'),
28
+ ('hi', 'çi'),
29
+ ('hj', 'ç'),
30
+ ('f', 'ɸ'),
31
+ ('I', 'i*'),
32
+ ('U', 'ɯ*'),
33
+ ('r', 'ɾ')
34
+ ]]
35
+
36
+ # Dictinary of (consonant, sokuon) pairs:
37
+ _real_sokuon = {
38
+ 'k': 'k#',
39
+ 'g': 'k#',
40
+ 't': 't#',
41
+ 'd': 't#',
42
+ 'ʦ': 't#',
43
+ 'ʧ': 't#',
44
+ 'ʥ': 't#',
45
+ 'j': 't#',
46
+ 's': 's',
47
+ 'ʃ': 's',
48
+ 'p': 'p#',
49
+ 'b': 'p#'
50
+ }
51
+
52
+ # Dictinary of (consonant, hatsuon) pairs:
53
+ _real_hatsuon = {
54
+ 'p': 'm',
55
+ 'b': 'm',
56
+ 'm': 'm',
57
+ 't': 'n',
58
+ 'd': 'n',
59
+ 'n': 'n',
60
+ 'ʧ': 'n^',
61
+ 'ʥ': 'n^',
62
+ 'k': 'ŋ',
63
+ 'g': 'ŋ'
64
+ }
65
+
66
+
67
+ def symbols_to_japanese(text):
68
+ for regex, replacement in _symbols_to_japanese:
69
+ text = re.sub(regex, replacement, text)
70
+ return text
71
+
72
+
73
+ def japanese_to_romaji_with_accent(text):
74
+ '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
75
+ text = symbols_to_japanese(text)
76
+ sentences = re.split(_japanese_marks, text)
77
+ marks = re.findall(_japanese_marks, text)
78
+ text = ''
79
+ for i, sentence in enumerate(sentences):
80
+ if re.match(_japanese_characters, sentence):
81
+ if text != '':
82
+ text += ' '
83
+ labels = pyopenjtalk.extract_fullcontext(sentence)
84
+ for n, label in enumerate(labels):
85
+ phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
86
+ if phoneme not in ['sil', 'pau']:
87
+ text += phoneme.replace('ch', 'ʧ').replace('sh',
88
+ 'ʃ').replace('cl', 'Q')
89
+ else:
90
+ continue
91
+ # n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
92
+ a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
93
+ a2 = int(re.search(r"\+(\d+)\+", label).group(1))
94
+ a3 = int(re.search(r"\+(\d+)/", label).group(1))
95
+ if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
96
+ a2_next = -1
97
+ else:
98
+ a2_next = int(
99
+ re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
100
+ # Accent phrase boundary
101
+ if a3 == 1 and a2_next == 1:
102
+ text += ' '
103
+ # Falling
104
+ elif a1 == 0 and a2_next == a2 + 1:
105
+ text += '↓'
106
+ # Rising
107
+ elif a2 == 1 and a2_next == 2:
108
+ text += '↑'
109
+ if i < len(marks):
110
+ text += unidecode(marks[i]).replace(' ', '')
111
+ return text
112
+
113
+
114
+ def get_real_sokuon(text):
115
+ text=re.sub('Q[↑↓]*(.)',lambda x:_real_sokuon[x.group(1)]+x.group(0)[1:] if x.group(1) in _real_sokuon.keys() else x.group(0),text)
116
+ return text
117
+
118
+
119
+ def get_real_hatsuon(text):
120
+ text=re.sub('N[↑↓]*(.)',lambda x:_real_hatsuon[x.group(1)]+x.group(0)[1:] if x.group(1) in _real_hatsuon.keys() else x.group(0),text)
121
+ return text
122
+
123
+
124
+ def japanese_to_ipa(text):
125
+ text=japanese_to_romaji_with_accent(text)
126
+ for regex, replacement in _romaji_to_ipa:
127
+ text = re.sub(regex, replacement, text)
128
+ text = re.sub(
129
+ r'([A-Za-zɯ])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
130
+ text = get_real_sokuon(text)
131
+ text = get_real_hatsuon(text)
132
+ return text
text/korean.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from jamo import h2j, j2hcj
3
+ import ko_pron
4
+
5
+
6
+ # This is a list of Korean classifiers preceded by pure Korean numerals.
7
+ _korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
8
+
9
+ # List of (hangul, hangul divided) pairs:
10
+ _hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
11
+ ('ㄳ', 'ㄱㅅ'),
12
+ ('ㄵ', 'ㄴㅈ'),
13
+ ('ㄶ', 'ㄴㅎ'),
14
+ ('ㄺ', 'ㄹㄱ'),
15
+ ('ㄻ', 'ㄹㅁ'),
16
+ ('ㄼ', 'ㄹㅂ'),
17
+ ('ㄽ', 'ㄹㅅ'),
18
+ ('ㄾ', 'ㄹㅌ'),
19
+ ('ㄿ', 'ㄹㅍ'),
20
+ ('ㅀ', 'ㄹㅎ'),
21
+ ('ㅄ', 'ㅂㅅ'),
22
+ ('ㅘ', 'ㅗㅏ'),
23
+ ('ㅙ', 'ㅗㅐ'),
24
+ ('ㅚ', 'ㅗㅣ'),
25
+ ('ㅝ', 'ㅜㅓ'),
26
+ ('ㅞ', 'ㅜㅔ'),
27
+ ('ㅟ', 'ㅜㅣ'),
28
+ ('ㅢ', 'ㅡㅣ'),
29
+ ('ㅑ', 'ㅣㅏ'),
30
+ ('ㅒ', 'ㅣㅐ'),
31
+ ('ㅕ', 'ㅣㅓ'),
32
+ ('ㅖ', 'ㅣㅔ'),
33
+ ('ㅛ', 'ㅣㅗ'),
34
+ ('ㅠ', 'ㅣㅜ')
35
+ ]]
36
+
37
+ # List of (Latin alphabet, hangul) pairs:
38
+ _latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
39
+ ('a', '에이'),
40
+ ('b', '비'),
41
+ ('c', '시'),
42
+ ('d', '디'),
43
+ ('e', '이'),
44
+ ('f', '에프'),
45
+ ('g', '지'),
46
+ ('h', '에이치'),
47
+ ('i', '아이'),
48
+ ('j', '제이'),
49
+ ('k', '케이'),
50
+ ('l', '엘'),
51
+ ('m', '엠'),
52
+ ('n', '엔'),
53
+ ('o', '오'),
54
+ ('p', '피'),
55
+ ('q', '큐'),
56
+ ('r', '아르'),
57
+ ('s', '에스'),
58
+ ('t', '티'),
59
+ ('u', '유'),
60
+ ('v', '브이'),
61
+ ('w', '더블유'),
62
+ ('x', '엑스'),
63
+ ('y', '와이'),
64
+ ('z', '제트')
65
+ ]]
66
+
67
+ # List of (ipa, lazy ipa) pairs:
68
+ _ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
69
+ ('t͡ɕ','ʧ'),
70
+ ('d͡ʑ','ʥ'),
71
+ ('ɲ','n^'),
72
+ ('ɕ','ʃ'),
73
+ ('ʷ','w'),
74
+ ('ɭ','l`'),
75
+ ('ʎ','ɾ'),
76
+ ('ɣ','ŋ'),
77
+ ('ɰ','ɯ'),
78
+ ('ʝ','j'),
79
+ ('ʌ','ə'),
80
+ ('ɡ','g'),
81
+ ('\u031a','#'),
82
+ ('\u0348','='),
83
+ ('\u031e',''),
84
+ ('\u0320',''),
85
+ ('\u0339','')
86
+ ]]
87
+
88
+
89
+ def latin_to_hangul(text):
90
+ for regex, replacement in _latin_to_hangul:
91
+ text = re.sub(regex, replacement, text)
92
+ return text
93
+
94
+
95
+ def divide_hangul(text):
96
+ text = j2hcj(h2j(text))
97
+ for regex, replacement in _hangul_divided:
98
+ text = re.sub(regex, replacement, text)
99
+ return text
100
+
101
+
102
+ def hangul_number(num, sino=True):
103
+ '''Reference https://github.com/Kyubyong/g2pK'''
104
+ num = re.sub(',', '', num)
105
+
106
+ if num == '0':
107
+ return '영'
108
+ if not sino and num == '20':
109
+ return '스무'
110
+
111
+ digits = '123456789'
112
+ names = '일이삼사오육칠팔구'
113
+ digit2name = {d: n for d, n in zip(digits, names)}
114
+
115
+ modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
116
+ decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
117
+ digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
118
+ digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
119
+
120
+ spelledout = []
121
+ for i, digit in enumerate(num):
122
+ i = len(num) - i - 1
123
+ if sino:
124
+ if i == 0:
125
+ name = digit2name.get(digit, '')
126
+ elif i == 1:
127
+ name = digit2name.get(digit, '') + '십'
128
+ name = name.replace('일십', '십')
129
+ else:
130
+ if i == 0:
131
+ name = digit2mod.get(digit, '')
132
+ elif i == 1:
133
+ name = digit2dec.get(digit, '')
134
+ if digit == '0':
135
+ if i % 4 == 0:
136
+ last_three = spelledout[-min(3, len(spelledout)):]
137
+ if ''.join(last_three) == '':
138
+ spelledout.append('')
139
+ continue
140
+ else:
141
+ spelledout.append('')
142
+ continue
143
+ if i == 2:
144
+ name = digit2name.get(digit, '') + '백'
145
+ name = name.replace('일백', '백')
146
+ elif i == 3:
147
+ name = digit2name.get(digit, '') + '천'
148
+ name = name.replace('일천', '천')
149
+ elif i == 4:
150
+ name = digit2name.get(digit, '') + '만'
151
+ name = name.replace('일만', '만')
152
+ elif i == 5:
153
+ name = digit2name.get(digit, '') + '십'
154
+ name = name.replace('일십', '십')
155
+ elif i == 6:
156
+ name = digit2name.get(digit, '') + '백'
157
+ name = name.replace('일백', '백')
158
+ elif i == 7:
159
+ name = digit2name.get(digit, '') + '천'
160
+ name = name.replace('일천', '천')
161
+ elif i == 8:
162
+ name = digit2name.get(digit, '') + '억'
163
+ elif i == 9:
164
+ name = digit2name.get(digit, '') + '십'
165
+ elif i == 10:
166
+ name = digit2name.get(digit, '') + '백'
167
+ elif i == 11:
168
+ name = digit2name.get(digit, '') + '천'
169
+ elif i == 12:
170
+ name = digit2name.get(digit, '') + '조'
171
+ elif i == 13:
172
+ name = digit2name.get(digit, '') + '십'
173
+ elif i == 14:
174
+ name = digit2name.get(digit, '') + '백'
175
+ elif i == 15:
176
+ name = digit2name.get(digit, '') + '천'
177
+ spelledout.append(name)
178
+ return ''.join(elem for elem in spelledout)
179
+
180
+
181
+ def number_to_hangul(text):
182
+ '''Reference https://github.com/Kyubyong/g2pK'''
183
+ tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
184
+ for token in tokens:
185
+ num, classifier = token
186
+ if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
187
+ spelledout = hangul_number(num, sino=False)
188
+ else:
189
+ spelledout = hangul_number(num, sino=True)
190
+ text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
191
+ # digit by digit for remaining digits
192
+ digits = '0123456789'
193
+ names = '영일이삼사오육칠팔구'
194
+ for d, n in zip(digits, names):
195
+ text = text.replace(d, n)
196
+ return text
197
+
198
+
199
+ def korean_to_lazy_ipa(text):
200
+ text = latin_to_hangul(text)
201
+ text = number_to_hangul(text)
202
+ text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa'),text).split('] ~ [')[0]
203
+ for regex, replacement in _ipa_to_lazy_ipa:
204
+ text = re.sub(regex, replacement, text)
205
+ return text
text/mandarin.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import sys
4
+
5
+ import jieba
6
+ import cn2an
7
+ import logging
8
+ from pypinyin import lazy_pinyin, BOPOMOFO
9
+
10
+ logging.getLogger('jieba').setLevel(logging.WARNING)
11
+
12
+
13
+ # List of (Latin alphabet, bopomofo) pairs:
14
+ _latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
15
+ ('a', 'ㄟˉ'),
16
+ ('b', 'ㄅㄧˋ'),
17
+ ('c', 'ㄙㄧˉ'),
18
+ ('d', 'ㄉㄧˋ'),
19
+ ('e', 'ㄧˋ'),
20
+ ('f', 'ㄝˊㄈㄨˋ'),
21
+ ('g', 'ㄐㄧˋ'),
22
+ ('h', 'ㄝˇㄑㄩˋ'),
23
+ ('i', 'ㄞˋ'),
24
+ ('j', 'ㄐㄟˋ'),
25
+ ('k', 'ㄎㄟˋ'),
26
+ ('l', 'ㄝˊㄛˋ'),
27
+ ('m', 'ㄝˊㄇㄨˋ'),
28
+ ('n', 'ㄣˉ'),
29
+ ('o', 'ㄡˉ'),
30
+ ('p', 'ㄆㄧˉ'),
31
+ ('q', 'ㄎㄧㄡˉ'),
32
+ ('r', 'ㄚˋ'),
33
+ ('s', 'ㄝˊㄙˋ'),
34
+ ('t', 'ㄊㄧˋ'),
35
+ ('u', 'ㄧㄡˉ'),
36
+ ('v', 'ㄨㄧˉ'),
37
+ ('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
38
+ ('x', 'ㄝˉㄎㄨˋㄙˋ'),
39
+ ('y', 'ㄨㄞˋ'),
40
+ ('z', 'ㄗㄟˋ')
41
+ ]]
42
+
43
+ # List of (bopomofo, romaji) pairs:
44
+ _bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
45
+ ('ㄅㄛ', 'p⁼wo'),
46
+ ('ㄆㄛ', 'pʰwo'),
47
+ ('ㄇㄛ', 'mwo'),
48
+ ('ㄈㄛ', 'fwo'),
49
+ ('ㄅ', 'p⁼'),
50
+ ('ㄆ', 'pʰ'),
51
+ ('ㄇ', 'm'),
52
+ ('ㄈ', 'f'),
53
+ ('ㄉ', 't⁼'),
54
+ ('ㄊ', 'tʰ'),
55
+ ('ㄋ', 'n'),
56
+ ('ㄌ', 'l'),
57
+ ('ㄍ', 'k⁼'),
58
+ ('ㄎ', 'kʰ'),
59
+ ('ㄏ', 'h'),
60
+ ('ㄐ', 'ʧ⁼'),
61
+ ('ㄑ', 'ʧʰ'),
62
+ ('ㄒ', 'ʃ'),
63
+ ('ㄓ', 'ʦ`⁼'),
64
+ ('ㄔ', 'ʦ`ʰ'),
65
+ ('ㄕ', 's`'),
66
+ ('ㄖ', 'ɹ`'),
67
+ ('ㄗ', 'ʦ⁼'),
68
+ ('ㄘ', 'ʦʰ'),
69
+ ('ㄙ', 's'),
70
+ ('ㄚ', 'a'),
71
+ ('ㄛ', 'o'),
72
+ ('ㄜ', 'ə'),
73
+ ('ㄝ', 'e'),
74
+ ('ㄞ', 'ai'),
75
+ ('ㄟ', 'ei'),
76
+ ('ㄠ', 'au'),
77
+ ('ㄡ', 'ou'),
78
+ ('ㄧㄢ', 'yeNN'),
79
+ ('ㄢ', 'aNN'),
80
+ ('ㄧㄣ', 'iNN'),
81
+ ('ㄣ', 'əNN'),
82
+ ('ㄤ', 'aNg'),
83
+ ('ㄧㄥ', 'iNg'),
84
+ ('ㄨㄥ', 'uNg'),
85
+ ('ㄩㄥ', 'yuNg'),
86
+ ('ㄥ', 'əNg'),
87
+ ('ㄦ', 'əɻ'),
88
+ ('ㄧ', 'i'),
89
+ ('ㄨ', 'u'),
90
+ ('ㄩ', 'ɥ'),
91
+ ('ˉ', '→'),
92
+ ('ˊ', '↑'),
93
+ ('ˇ', '↓↑'),
94
+ ('ˋ', '↓'),
95
+ ('˙', ''),
96
+ (',', ','),
97
+ ('。', '.'),
98
+ ('!', '!'),
99
+ ('?', '?'),
100
+ ('—', '-')
101
+ ]]
102
+
103
+ # List of (romaji, ipa) pairs:
104
+ _romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
105
+ ('ʃy', 'ʃ'),
106
+ ('ʧʰy', 'ʧʰ'),
107
+ ('ʧ⁼y', 'ʧ⁼'),
108
+ ('NN', 'n'),
109
+ ('Ng', 'ŋ'),
110
+ ('y', 'j'),
111
+ ('h', 'x')
112
+ ]]
113
+
114
+
115
+ def number_to_chinese(text):
116
+ numbers = re.findall(r'\d+(?:\.?\d+)?', text)
117
+ for number in numbers:
118
+ text = text.replace(number, cn2an.an2cn(number), 1)
119
+ return text
120
+
121
+
122
+ def chinese_to_bopomofo(text):
123
+ text = text.replace('、', ',').replace(';', ',').replace(':', ',')
124
+ words = jieba.lcut(text, cut_all=False)
125
+ text = ''
126
+ for word in words:
127
+ bopomofos = lazy_pinyin(word, BOPOMOFO)
128
+ if not re.search('[\u4e00-\u9fff]', word):
129
+ text += word
130
+ continue
131
+ for i in range(len(bopomofos)):
132
+ if re.match('[\u3105-\u3129]', bopomofos[i][-1]):
133
+ bopomofos[i] += 'ˉ'
134
+ if text != '':
135
+ text += ' '
136
+ text += ''.join(bopomofos)
137
+ return text
138
+
139
+
140
+ def latin_to_bopomofo(text):
141
+ for regex, replacement in _latin_to_bopomofo:
142
+ text = re.sub(regex, replacement, text)
143
+ return text
144
+
145
+
146
+ def bopomofo_to_romaji(text):
147
+ for regex, replacement in _bopomofo_to_romaji:
148
+ text = re.sub(regex, replacement, text)
149
+ return text
150
+
151
+
152
+ def chinese_to_romaji(text):
153
+ text = number_to_chinese(text)
154
+ text = chinese_to_bopomofo(text)
155
+ text = latin_to_bopomofo(text)
156
+ text = bopomofo_to_romaji(text)
157
+ text = re.sub('i[aoe]', lambda x: 'y' + x.group(0)[1:], text)
158
+ text = re.sub('u[aoəe]', lambda x: 'w' + x.group(0)[1:], text)
159
+ text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)', lambda x: x.group(1) +
160
+ 'ɹ`' + x.group(2), text).replace('ɻ', 'ɹ`')
161
+ text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)',
162
+ lambda x: x.group(1) + 'ɹ' + x.group(2), text)
163
+ return text
164
+
165
+
166
+ def chinese_to_lazy_ipa(text):
167
+ text = chinese_to_romaji(text)
168
+ for regex, replacement in _romaji_to_ipa:
169
+ text = re.sub(regex, replacement, text)
170
+ return text
text/sanskrit.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from indic_transliteration import sanscript
3
+
4
+
5
+ # List of (iast, ipa) pairs:
6
+ _iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
7
+ ('a', 'ə'),
8
+ ('ā', 'aː'),
9
+ ('ī', 'iː'),
10
+ ('ū', 'uː'),
11
+ ('ṛ', 'ɹ`'),
12
+ ('ṝ', 'ɹ`ː'),
13
+ ('ḷ', 'l`'),
14
+ ('ḹ', 'l`ː'),
15
+ ('e', 'eː'),
16
+ ('o', 'oː'),
17
+ ('k', 'k⁼'),
18
+ ('k⁼h', 'kʰ'),
19
+ ('g', 'g⁼'),
20
+ ('g⁼h', 'gʰ'),
21
+ ('ṅ', 'ŋ'),
22
+ ('c', 'ʧ⁼'),
23
+ ('ʧ⁼h', 'ʧʰ'),
24
+ ('j', 'ʥ⁼'),
25
+ ('ʥ⁼h', 'ʥʰ'),
26
+ ('ñ', 'n^'),
27
+ ('ṭ', 't`⁼'),
28
+ ('t`⁼h', 't`ʰ'),
29
+ ('ḍ', 'd`⁼'),
30
+ ('d`⁼h', 'd`ʰ'),
31
+ ('ṇ', 'n`'),
32
+ ('t', 't⁼'),
33
+ ('t⁼h', 'tʰ'),
34
+ ('d', 'd⁼'),
35
+ ('d⁼h', 'dʰ'),
36
+ ('p', 'p⁼'),
37
+ ('p⁼h', 'pʰ'),
38
+ ('b', 'b⁼'),
39
+ ('b⁼h', 'bʰ'),
40
+ ('y', 'j'),
41
+ ('ś', 'ʃ'),
42
+ ('ṣ', 's`'),
43
+ ('r', 'ɾ'),
44
+ ('l̤', 'l`'),
45
+ ('h', 'ɦ'),
46
+ ("'", ''),
47
+ ('~', '^'),
48
+ ('ṃ', '^')
49
+ ]]
50
+
51
+
52
+ def devanagari_to_ipa(text):
53
+ text = text.replace('ॐ', 'ओम्')
54
+ text = re.sub(r'\s*।\s*$', '.', text)
55
+ text = re.sub(r'\s*।\s*', ', ', text)
56
+ text = re.sub(r'\s*॥', '.', text)
57
+ text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
58
+ for regex, replacement in _iast_to_ipa:
59
+ text = re.sub(regex, replacement, text)
60
+ text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
61
+ [:-1]+'h'+x.group(1)+'*', text)
62
+ return text
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from json import loads
3
+ from torch import load, FloatTensor
4
+ from numpy import float32
5
+ import librosa
6
+
7
+
8
+ class HParams():
9
+ def __init__(self, **kwargs):
10
+ for k, v in kwargs.items():
11
+ if type(v) == dict:
12
+ v = HParams(**v)
13
+ self[k] = v
14
+
15
+ def keys(self):
16
+ return self.__dict__.keys()
17
+
18
+ def items(self):
19
+ return self.__dict__.items()
20
+
21
+ def values(self):
22
+ return self.__dict__.values()
23
+
24
+ def __len__(self):
25
+ return len(self.__dict__)
26
+
27
+ def __getitem__(self, key):
28
+ return getattr(self, key)
29
+
30
+ def __setitem__(self, key, value):
31
+ return setattr(self, key, value)
32
+
33
+ def __contains__(self, key):
34
+ return key in self.__dict__
35
+
36
+ def __repr__(self):
37
+ return self.__dict__.__repr__()
38
+
39
+
40
+ def load_checkpoint(checkpoint_path, model):
41
+ checkpoint_dict = load(checkpoint_path, map_location='cpu')
42
+ iteration = checkpoint_dict['iteration']
43
+ saved_state_dict = checkpoint_dict['model']
44
+ if hasattr(model, 'module'):
45
+ state_dict = model.module.state_dict()
46
+ else:
47
+ state_dict = model.state_dict()
48
+ new_state_dict = {}
49
+ for k, v in state_dict.items():
50
+ try:
51
+ new_state_dict[k] = saved_state_dict[k]
52
+ except:
53
+ logging.info("%s is not in the checkpoint" % k)
54
+ new_state_dict[k] = v
55
+ pass
56
+ if hasattr(model, 'module'):
57
+ model.module.load_state_dict(new_state_dict)
58
+ else:
59
+ model.load_state_dict(new_state_dict)
60
+ logging.info("Loaded checkpoint '{}' (iteration {})".format(
61
+ checkpoint_path, iteration))
62
+ return
63
+
64
+
65
+ def get_hparams_from_file(config_path):
66
+ with open(config_path, "r") as f:
67
+ data = f.read()
68
+ config = loads(data)
69
+
70
+ hparams = HParams(**config)
71
+ return hparams
72
+
73
+
74
+ def load_audio_to_torch(full_path, target_sampling_rate):
75
+ audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
76
+ return FloatTensor(audio.astype(float32))