Spaces:
Running
Running
import os | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
import tensorflow as tf | |
tf.config.set_visible_devices([], 'GPU') | |
import gradio as gr | |
import numpy as np | |
from tensorflow.keras.preprocessing import image | |
from tensorflow.keras.models import model_from_json | |
from PIL import Image | |
from description import description | |
from location import location | |
def load_model_from_file(json_path, h5_path): | |
with open(json_path, "r") as f: | |
json_config = f.read() | |
model = model_from_json(json_config) | |
model.load_weights(h5_path) | |
return model | |
model = load_model_from_file("model.json", "my_model.h5") | |
labels = [ | |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan", | |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi", | |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta" | |
] | |
def classify_image(img): | |
try: | |
img = img.resize((224, 224)) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 | |
pred = model.predict(img_array)[0] | |
confidence = np.max(pred) | |
predicted_label = labels[np.argmax(pred)] | |
akurasi = float(confidence) | |
if confidence < 0.8: | |
label_output = "Tidak dapat dikenali (Confidence: {:.2f}%)".format(confidence * 100) | |
deskripsi = ( | |
"Tolong arahkan ke objek yang jelas agar bisa diidentifikasikan. " | |
"Pastikan anda berada di salah satu tempat seperti:\n" | |
"- Benteng Vredeburg\n- Candi Borobudur\n- Candi Prambanan\n" | |
"- Gedung Agung Istana Kepresidenan Yogyakarta\n- Masjid Gedhe Kauman\n" | |
"- Monumen Serangan 1 Maret\n- Museum Gunungapi Merapi\n- Situs Ratu Boko\n" | |
"- Taman Sari\n- Tugu Yogyakarta" | |
) | |
lokasi = "-" | |
else: | |
label_output = f"{predicted_label} (Confidence: {confidence * 100:.2f}%)" | |
deskripsi = description.get(predicted_label, "Deskripsi belum tersedia.") | |
lokasi = location.get(predicted_label, None) | |
if lokasi: | |
lokasi = f'<a href="{lokasi}" target="_blank">Lihat Lokasi di Google Maps</a>' | |
else: | |
lokasi = "Lokasi tidak ditemukan" | |
return label_output, deskripsi, lokasi, akurasi | |
except Exception as e: | |
return "Error", str(e), "-" | |
interface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil", label="Upload Gambar"), | |
outputs=[ | |
gr.Textbox(label="Output Klasifikasi"), | |
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50), | |
gr.HTML(label="Link Lokasi"), | |
], | |
title="Klasifikasi Gambar", | |
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut." | |
) | |
interface.launch() | |