Canstralian commited on
Commit
2b6ee92
·
verified ·
1 Parent(s): f543eb9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -4
app.py CHANGED
@@ -1,17 +1,60 @@
1
  import gradio as gr
2
  from transformers import pipeline, Trainer, TrainingArguments, AutoModelForCausalLM, AutoTokenizer
3
  import torch
 
4
 
5
  # Initialize model and tokenizer
6
  model_name = "huggingface/transformer_model" # Replace with the actual model name
7
  model = AutoModelForCausalLM.from_pretrained(model_name)
8
  tokenizer = AutoTokenizer.from_pretrained(model_name)
9
 
10
- # Define Gradio interface
11
  def upload_and_finetune(file):
12
- # Your fine-tuning code here
13
- # Example: Load dataset, preprocess, and fine-tune model
14
- return f"File {file.name} uploaded successfully!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  # Create Gradio interface with correct parameter
17
  interface = gr.Interface(
 
1
  import gradio as gr
2
  from transformers import pipeline, Trainer, TrainingArguments, AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
+ import pandas as pd
5
 
6
  # Initialize model and tokenizer
7
  model_name = "huggingface/transformer_model" # Replace with the actual model name
8
  model = AutoModelForCausalLM.from_pretrained(model_name)
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
10
 
11
+ # Define Gradio interface function
12
  def upload_and_finetune(file):
13
+ # Read the uploaded file (assuming it's a CSV for this example)
14
+ file_path = file.name
15
+ data = pd.read_csv(file_path) # Update this if the file format is different
16
+
17
+ # Preprocess the data (tokenization)
18
+ # This example assumes the dataset has a 'text' column that contains the training data.
19
+ texts = data['text'].tolist()
20
+ encodings = tokenizer(texts, truncation=True, padding=True, return_tensors="pt")
21
+
22
+ # Create a dataset and dataloader for training
23
+ class CustomDataset(torch.utils.data.Dataset):
24
+ def __init__(self, encodings):
25
+ self.encodings = encodings
26
+
27
+ def __len__(self):
28
+ return len(self.encodings['input_ids'])
29
+
30
+ def __getitem__(self, idx):
31
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
32
+ return item
33
+
34
+ train_dataset = CustomDataset(encodings)
35
+
36
+ # Set up training arguments
37
+ training_args = TrainingArguments(
38
+ output_dir='./results', # output directory
39
+ num_train_epochs=3, # number of training epochs
40
+ per_device_train_batch_size=4, # batch size for training
41
+ logging_dir='./logs', # directory for storing logs
42
+ )
43
+
44
+ # Set up Trainer
45
+ trainer = Trainer(
46
+ model=model, # the model to be trained
47
+ args=training_args, # training arguments, defined above
48
+ train_dataset=train_dataset, # training dataset
49
+ )
50
+
51
+ # Train the model
52
+ trainer.train()
53
+
54
+ # Save the fine-tuned model
55
+ model.save_pretrained('./fine_tuned_model')
56
+
57
+ return f"File {file.name} uploaded and model fine-tuned successfully!"
58
 
59
  # Create Gradio interface with correct parameter
60
  interface = gr.Interface(