Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, Trainer, TrainingArguments, AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
# Initialize model and tokenizer
|
6 |
model_name = "huggingface/transformer_model" # Replace with the actual model name
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
-
# Define Gradio interface
|
11 |
def upload_and_finetune(file):
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Create Gradio interface with correct parameter
|
17 |
interface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, Trainer, TrainingArguments, AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
import pandas as pd
|
5 |
|
6 |
# Initialize model and tokenizer
|
7 |
model_name = "huggingface/transformer_model" # Replace with the actual model name
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
+
# Define Gradio interface function
|
12 |
def upload_and_finetune(file):
|
13 |
+
# Read the uploaded file (assuming it's a CSV for this example)
|
14 |
+
file_path = file.name
|
15 |
+
data = pd.read_csv(file_path) # Update this if the file format is different
|
16 |
+
|
17 |
+
# Preprocess the data (tokenization)
|
18 |
+
# This example assumes the dataset has a 'text' column that contains the training data.
|
19 |
+
texts = data['text'].tolist()
|
20 |
+
encodings = tokenizer(texts, truncation=True, padding=True, return_tensors="pt")
|
21 |
+
|
22 |
+
# Create a dataset and dataloader for training
|
23 |
+
class CustomDataset(torch.utils.data.Dataset):
|
24 |
+
def __init__(self, encodings):
|
25 |
+
self.encodings = encodings
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.encodings['input_ids'])
|
29 |
+
|
30 |
+
def __getitem__(self, idx):
|
31 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
32 |
+
return item
|
33 |
+
|
34 |
+
train_dataset = CustomDataset(encodings)
|
35 |
+
|
36 |
+
# Set up training arguments
|
37 |
+
training_args = TrainingArguments(
|
38 |
+
output_dir='./results', # output directory
|
39 |
+
num_train_epochs=3, # number of training epochs
|
40 |
+
per_device_train_batch_size=4, # batch size for training
|
41 |
+
logging_dir='./logs', # directory for storing logs
|
42 |
+
)
|
43 |
+
|
44 |
+
# Set up Trainer
|
45 |
+
trainer = Trainer(
|
46 |
+
model=model, # the model to be trained
|
47 |
+
args=training_args, # training arguments, defined above
|
48 |
+
train_dataset=train_dataset, # training dataset
|
49 |
+
)
|
50 |
+
|
51 |
+
# Train the model
|
52 |
+
trainer.train()
|
53 |
+
|
54 |
+
# Save the fine-tuned model
|
55 |
+
model.save_pretrained('./fine_tuned_model')
|
56 |
+
|
57 |
+
return f"File {file.name} uploaded and model fine-tuned successfully!"
|
58 |
|
59 |
# Create Gradio interface with correct parameter
|
60 |
interface = gr.Interface(
|