Canstralian commited on
Commit
58412c3
·
verified ·
1 Parent(s): 286fe34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -15
app.py CHANGED
@@ -6,27 +6,39 @@ For more information on `huggingface_hub` Inference API support, please check th
6
  """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
  history: list[tuple[str, str]],
13
  system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
 
28
  response = ""
29
 
 
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -39,25 +51,31 @@ def respond(
39
  response += token
40
  yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
- respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
51
  gr.Slider(
52
  minimum=0.1,
53
  maximum=1.0,
54
- value=0.95,
55
  step=0.05,
56
  label="Top-p (nucleus sampling)",
57
  ),
58
  ],
 
 
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
6
  """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ def simulate_attack(
10
+ prompt,
 
11
  history: list[tuple[str, str]],
12
  system_message,
13
  max_tokens,
14
  temperature,
15
  top_p,
16
  ):
17
+ """
18
+ Simulates a Blackhat AI scenario by generating attack strategies, potential impacts, and ethical countermeasures.
19
+ """
20
+ # Build the system message to define the simulator's behavior
21
+ messages = [
22
+ {
23
+ "role": "system",
24
+ "content": system_message,
25
+ }
26
+ ]
27
 
28
+ # Include user and assistant message history
29
  for val in history:
30
  if val[0]:
31
  messages.append({"role": "user", "content": val[0]})
32
  if val[1]:
33
  messages.append({"role": "assistant", "content": val[1]})
34
 
35
+ # Add the current user prompt
36
+ messages.append({"role": "user", "content": prompt})
37
 
38
+ # Initialize the response variable
39
  response = ""
40
 
41
+ # Stream the AI's response from the inference API
42
  for message in client.chat_completion(
43
  messages,
44
  max_tokens=max_tokens,
 
51
  response += token
52
  yield response
53
 
54
+ # Define the Gradio ChatInterface with security-focused configuration
 
 
55
  demo = gr.ChatInterface(
56
+ simulate_attack,
57
  additional_inputs=[
58
+ gr.Textbox(
59
+ value=(
60
+ "You are an AI simulator for cybersecurity training, designed to generate attack scenarios, analyze their impacts, and suggest countermeasures."
61
+ ),
62
+ label="System message",
63
+ ),
64
+ gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
65
+ gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"),
66
  gr.Slider(
67
  minimum=0.1,
68
  maximum=1.0,
69
+ value=0.9,
70
  step=0.05,
71
  label="Top-p (nucleus sampling)",
72
  ),
73
  ],
74
+ title="Blackhat AI Simulator",
75
+ description=(
76
+ "This simulator generates adversarial scenarios, analyzes attack vectors, and provides ethical countermeasures. Use responsibly for cybersecurity training and awareness."
77
+ ),
78
  )
79
 
 
80
  if __name__ == "__main__":
81
+ demo.launch()