Canstralian commited on
Commit
498f37c
1 Parent(s): 927d187

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -74
app.py CHANGED
@@ -1,76 +1,3 @@
1
- import os
2
  import gradio as gr
3
- from huggingface_hub import HfApi, SpaceHardware
4
 
5
- # Set up Hugging Face API token and Space ID
6
- HF_TOKEN = os.getenv("HF_TOKEN") # Ensure your Hugging Face token is set as a secret
7
- TRAINING_SPACE_ID = "your_space_id_here" # Replace with your actual space ID
8
-
9
- # Initialize Hugging Face API
10
- api = HfApi(token=HF_TOKEN)
11
-
12
- # Function to check for a scheduled task (this is a placeholder for your actual task-checking logic)
13
- def get_task():
14
- # You can implement logic here to check for scheduled tasks
15
- return None # For example, return None if no task is scheduled
16
-
17
- # Function to add a new task (you can implement this depending on your use case)
18
- def add_task(task):
19
- # Logic to add a new task
20
- return f"Task '{task}' added!"
21
-
22
- # Function to mark the task as "DONE" (this is a placeholder)
23
- def mark_as_done(task):
24
- # Mark the task as done once it's completed
25
- return f"Task '{task}' completed!"
26
-
27
- # Function to simulate training the model (replace with actual training logic)
28
- def train_and_upload(task):
29
- # Implement your model training logic here
30
- return f"Training model with task: {task}"
31
-
32
- # Gradio function to simulate chat-like interface
33
- def gradio_fn(task_input, history):
34
- task = get_task()
35
-
36
- if task is None:
37
- # If no task, add a new task and request hardware
38
- add_task_response = add_task(task_input)
39
- api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM)
40
-
41
- # Add the new task response to the chat history
42
- history.append(("Bot", add_task_response))
43
- return "", history # Clear the input box and return updated history
44
- else:
45
- # If a task is available, check for hardware
46
- runtime = api.get_space_runtime(repo_id=TRAINING_SPACE_ID)
47
- if runtime.hardware == SpaceHardware.T4_MEDIUM:
48
- # Fine-tune model on GPU if available
49
- train_and_upload_response = train_and_upload(task)
50
- mark_as_done_response = mark_as_done(task)
51
-
52
- # Add responses to history
53
- history.append(("Bot", train_and_upload_response))
54
- history.append(("Bot", mark_as_done_response))
55
-
56
- # Reset to CPU hardware after training
57
- api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.CPU_BASIC)
58
- else:
59
- # If GPU hardware is not available, request it
60
- api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM)
61
- history.append(("Bot", "Requesting GPU hardware..."))
62
-
63
- return "", history # Clear the input box and return updated history
64
-
65
- # Create the Gradio interface for chat
66
- chat_interface = gr.Interface(
67
- fn=gradio_fn,
68
- inputs=[gr.Textbox(label="Enter task name", placeholder="Type your task here...", lines=1)],
69
- outputs=[gr.Chatbot()],
70
- live=True,
71
- title="Task Manager Bot", # Optional: Title for the interface
72
- description="Interact with the bot to manage tasks and trigger model training."
73
- )
74
-
75
- # Launch the Gradio interface
76
- chat_interface.launch()
 
 
1
  import gradio as gr
 
2
 
3
+ gr.load("models/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0").launch()