Spaces:
Running
Running
Upload 6 files
Browse files- utils/__init__.py +1 -0
- utils/file_utils.py +127 -0
- utils/image_processing.py +511 -0
- utils/model_loader.py +379 -0
- utils/onnx_processing.py +729 -0
- utils/ui_components.py +137 -0
utils/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# Make utils a proper Python package
|
utils/file_utils.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File utilities for Image Tagger application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
def save_tags_to_file(image_path, all_tags, original_filename=None, custom_dir=None, overwrite=False):
|
| 9 |
+
"""
|
| 10 |
+
Save tags to a text file in a dedicated 'saved_tags' folder or custom directory.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
image_path: Path to the original image
|
| 14 |
+
all_tags: List of all tags to save
|
| 15 |
+
original_filename: Original filename if uploaded through Streamlit
|
| 16 |
+
custom_dir: Custom directory to save tags to (if None, uses 'saved_tags' folder)
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
Path to the saved file
|
| 20 |
+
"""
|
| 21 |
+
# Determine the save directory
|
| 22 |
+
if custom_dir and os.path.isdir(custom_dir):
|
| 23 |
+
save_dir = custom_dir
|
| 24 |
+
else:
|
| 25 |
+
# Create a dedicated folder for saved tags in the app's root directory
|
| 26 |
+
app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 27 |
+
save_dir = os.path.join(app_dir, "saved_tags")
|
| 28 |
+
|
| 29 |
+
# Ensure the directory exists
|
| 30 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 31 |
+
|
| 32 |
+
# Determine the filename
|
| 33 |
+
if original_filename:
|
| 34 |
+
# For uploaded files, use original filename
|
| 35 |
+
base_name = os.path.splitext(original_filename)[0]
|
| 36 |
+
else:
|
| 37 |
+
# For non-uploaded files, use the image path
|
| 38 |
+
base_name = os.path.splitext(os.path.basename(image_path))[0]
|
| 39 |
+
|
| 40 |
+
# Create the output path
|
| 41 |
+
output_path = os.path.join(save_dir, f"{base_name}.txt")
|
| 42 |
+
|
| 43 |
+
# If overwrite is False and file exists, add a timestamp to avoid overwriting
|
| 44 |
+
if not overwrite and os.path.exists(output_path):
|
| 45 |
+
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
| 46 |
+
output_path = os.path.join(save_dir, f"{base_name}_{timestamp}.txt")
|
| 47 |
+
|
| 48 |
+
# Write the tags to file
|
| 49 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
| 50 |
+
if all_tags:
|
| 51 |
+
# Add comma after each tag including the last one
|
| 52 |
+
tag_text = ", ".join(all_tags) + ","
|
| 53 |
+
f.write(tag_text)
|
| 54 |
+
|
| 55 |
+
return output_path
|
| 56 |
+
|
| 57 |
+
def get_default_save_locations():
|
| 58 |
+
"""
|
| 59 |
+
Get default save locations for tag files.
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
List of default save locations
|
| 63 |
+
"""
|
| 64 |
+
# App directory
|
| 65 |
+
app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 66 |
+
save_dir = os.path.join(app_dir, "saved_tags")
|
| 67 |
+
|
| 68 |
+
# Common user directories
|
| 69 |
+
desktop_dir = os.path.expanduser("~/Desktop")
|
| 70 |
+
download_dir = os.path.expanduser("~/Downloads")
|
| 71 |
+
documents_dir = os.path.expanduser("~/Documents")
|
| 72 |
+
|
| 73 |
+
# List of default save locations
|
| 74 |
+
save_locations = [
|
| 75 |
+
save_dir,
|
| 76 |
+
desktop_dir,
|
| 77 |
+
download_dir,
|
| 78 |
+
documents_dir,
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
# Ensure directories exist
|
| 82 |
+
for folder in save_locations:
|
| 83 |
+
os.makedirs(folder, exist_ok=True)
|
| 84 |
+
|
| 85 |
+
return save_locations
|
| 86 |
+
|
| 87 |
+
def apply_category_limits(result, category_limits):
|
| 88 |
+
"""
|
| 89 |
+
Apply category limits to a result dictionary.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
result: Result dictionary containing tags and all_tags
|
| 93 |
+
category_limits: Dictionary mapping categories to their tag limits
|
| 94 |
+
(0 = exclude category, -1 = no limit/include all)
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
Updated result dictionary with limits applied
|
| 98 |
+
"""
|
| 99 |
+
if not category_limits or not result['success']:
|
| 100 |
+
return result
|
| 101 |
+
|
| 102 |
+
# Get the filtered tags
|
| 103 |
+
filtered_tags = result['tags']
|
| 104 |
+
|
| 105 |
+
# Apply limits to each category
|
| 106 |
+
for category, cat_tags in list(filtered_tags.items()):
|
| 107 |
+
# Get limit for this category, default to -1 (no limit)
|
| 108 |
+
limit = category_limits.get(category, -1)
|
| 109 |
+
|
| 110 |
+
if limit == 0:
|
| 111 |
+
# Exclude this category entirely
|
| 112 |
+
del filtered_tags[category]
|
| 113 |
+
elif limit > 0 and len(cat_tags) > limit:
|
| 114 |
+
# Limit to top N tags for this category
|
| 115 |
+
filtered_tags[category] = cat_tags[:limit]
|
| 116 |
+
|
| 117 |
+
# Regenerate all_tags list after applying limits
|
| 118 |
+
all_tags = []
|
| 119 |
+
for category, cat_tags in filtered_tags.items():
|
| 120 |
+
for tag, _ in cat_tags:
|
| 121 |
+
all_tags.append(tag)
|
| 122 |
+
|
| 123 |
+
# Update the result with limited tags
|
| 124 |
+
result['tags'] = filtered_tags
|
| 125 |
+
result['all_tags'] = all_tags
|
| 126 |
+
|
| 127 |
+
return result
|
utils/image_processing.py
ADDED
|
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image processing functions for the Image Tagger application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import traceback
|
| 7 |
+
import glob
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process_image(image_path, model, thresholds, metadata, threshold_profile, active_threshold, active_category_thresholds, min_confidence=0.1):
|
| 11 |
+
"""
|
| 12 |
+
Process a single image and return the tags.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
image_path: Path to the image
|
| 16 |
+
model: The image tagger model
|
| 17 |
+
thresholds: Thresholds dictionary
|
| 18 |
+
metadata: Metadata dictionary
|
| 19 |
+
threshold_profile: Selected threshold profile
|
| 20 |
+
active_threshold: Overall threshold value
|
| 21 |
+
active_category_thresholds: Category-specific thresholds
|
| 22 |
+
min_confidence: Minimum confidence to include in results
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
Dictionary with tags, all probabilities, and other info
|
| 26 |
+
"""
|
| 27 |
+
try:
|
| 28 |
+
# Run inference directly using the model's predict method
|
| 29 |
+
if threshold_profile in ["Category-specific", "High Precision", "High Recall"]:
|
| 30 |
+
results = model.predict(
|
| 31 |
+
image_path=image_path,
|
| 32 |
+
category_thresholds=active_category_thresholds
|
| 33 |
+
)
|
| 34 |
+
else:
|
| 35 |
+
results = model.predict(
|
| 36 |
+
image_path=image_path,
|
| 37 |
+
threshold=active_threshold
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Extract and organize all probabilities
|
| 41 |
+
all_probs = {}
|
| 42 |
+
probs = results['refined_probabilities'][0] # Remove batch dimension
|
| 43 |
+
|
| 44 |
+
for idx in range(len(probs)):
|
| 45 |
+
prob_value = probs[idx].item()
|
| 46 |
+
if prob_value >= min_confidence:
|
| 47 |
+
tag, category = model.dataset.get_tag_info(idx)
|
| 48 |
+
|
| 49 |
+
if category not in all_probs:
|
| 50 |
+
all_probs[category] = []
|
| 51 |
+
|
| 52 |
+
all_probs[category].append((tag, prob_value))
|
| 53 |
+
|
| 54 |
+
# Sort tags by probability within each category
|
| 55 |
+
for category in all_probs:
|
| 56 |
+
all_probs[category] = sorted(
|
| 57 |
+
all_probs[category],
|
| 58 |
+
key=lambda x: x[1],
|
| 59 |
+
reverse=True
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Get the filtered tags based on the selected threshold
|
| 63 |
+
tags = {}
|
| 64 |
+
for category, cat_tags in all_probs.items():
|
| 65 |
+
threshold = active_category_thresholds.get(category, active_threshold) if active_category_thresholds else active_threshold
|
| 66 |
+
tags[category] = [(tag, prob) for tag, prob in cat_tags if prob >= threshold]
|
| 67 |
+
|
| 68 |
+
# Create a flat list of all tags above threshold
|
| 69 |
+
all_tags = []
|
| 70 |
+
for category, cat_tags in tags.items():
|
| 71 |
+
for tag, _ in cat_tags:
|
| 72 |
+
all_tags.append(tag)
|
| 73 |
+
|
| 74 |
+
return {
|
| 75 |
+
'tags': tags,
|
| 76 |
+
'all_probs': all_probs,
|
| 77 |
+
'all_tags': all_tags,
|
| 78 |
+
'success': True
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"Error processing {image_path}: {str(e)}")
|
| 83 |
+
traceback.print_exc()
|
| 84 |
+
return {
|
| 85 |
+
'tags': {},
|
| 86 |
+
'all_probs': {},
|
| 87 |
+
'all_tags': [],
|
| 88 |
+
'success': False,
|
| 89 |
+
'error': str(e)
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
def apply_category_limits(result, category_limits):
|
| 93 |
+
"""
|
| 94 |
+
Apply category limits to a result dictionary.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
result: Result dictionary containing tags and all_tags
|
| 98 |
+
category_limits: Dictionary mapping categories to their tag limits
|
| 99 |
+
(0 = exclude category, -1 = no limit/include all)
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
Updated result dictionary with limits applied
|
| 103 |
+
"""
|
| 104 |
+
if not category_limits or not result['success']:
|
| 105 |
+
return result
|
| 106 |
+
|
| 107 |
+
# Get the filtered tags
|
| 108 |
+
filtered_tags = result['tags']
|
| 109 |
+
|
| 110 |
+
# Apply limits to each category
|
| 111 |
+
for category, cat_tags in list(filtered_tags.items()):
|
| 112 |
+
# Get limit for this category, default to -1 (no limit)
|
| 113 |
+
limit = category_limits.get(category, -1)
|
| 114 |
+
|
| 115 |
+
if limit == 0:
|
| 116 |
+
# Exclude this category entirely
|
| 117 |
+
del filtered_tags[category]
|
| 118 |
+
elif limit > 0 and len(cat_tags) > limit:
|
| 119 |
+
# Limit to top N tags for this category
|
| 120 |
+
filtered_tags[category] = cat_tags[:limit]
|
| 121 |
+
|
| 122 |
+
# Regenerate all_tags list after applying limits
|
| 123 |
+
all_tags = []
|
| 124 |
+
for category, cat_tags in filtered_tags.items():
|
| 125 |
+
for tag, _ in cat_tags:
|
| 126 |
+
all_tags.append(tag)
|
| 127 |
+
|
| 128 |
+
# Update the result with limited tags
|
| 129 |
+
result['tags'] = filtered_tags
|
| 130 |
+
result['all_tags'] = all_tags
|
| 131 |
+
|
| 132 |
+
return result
|
| 133 |
+
|
| 134 |
+
def batch_process_images(folder_path, model, thresholds, metadata, threshold_profile, active_threshold,
|
| 135 |
+
active_category_thresholds, save_dir=None, progress_callback=None,
|
| 136 |
+
min_confidence=0.1, batch_size=1, category_limits=None):
|
| 137 |
+
"""
|
| 138 |
+
Process all images in a folder with optional batching for improved performance.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
folder_path: Path to folder containing images
|
| 142 |
+
model: The image tagger model
|
| 143 |
+
thresholds: Thresholds dictionary
|
| 144 |
+
metadata: Metadata dictionary
|
| 145 |
+
threshold_profile: Selected threshold profile
|
| 146 |
+
active_threshold: Overall threshold value
|
| 147 |
+
active_category_thresholds: Category-specific thresholds
|
| 148 |
+
save_dir: Directory to save tag files (if None uses default)
|
| 149 |
+
progress_callback: Optional callback for progress updates
|
| 150 |
+
min_confidence: Minimum confidence threshold
|
| 151 |
+
batch_size: Number of images to process at once (default: 1)
|
| 152 |
+
category_limits: Dictionary mapping categories to their tag limits (0 = unlimited)
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
Dictionary with results for each image
|
| 156 |
+
"""
|
| 157 |
+
from .file_utils import save_tags_to_file # Import here to avoid circular imports
|
| 158 |
+
import torch
|
| 159 |
+
from PIL import Image
|
| 160 |
+
import time
|
| 161 |
+
|
| 162 |
+
print(f"Starting batch processing on {folder_path} with batch size {batch_size}")
|
| 163 |
+
start_time = time.time()
|
| 164 |
+
|
| 165 |
+
# Find all image files in the folder
|
| 166 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png']
|
| 167 |
+
image_files = []
|
| 168 |
+
|
| 169 |
+
for ext in image_extensions:
|
| 170 |
+
image_files.extend(glob.glob(os.path.join(folder_path, ext)))
|
| 171 |
+
image_files.extend(glob.glob(os.path.join(folder_path, ext.upper())))
|
| 172 |
+
|
| 173 |
+
# Use a set to remove duplicate files (Windows filesystems are case-insensitive)
|
| 174 |
+
if os.name == 'nt': # Windows
|
| 175 |
+
# Use lowercase paths for comparison on Windows
|
| 176 |
+
unique_paths = set()
|
| 177 |
+
unique_files = []
|
| 178 |
+
for file_path in image_files:
|
| 179 |
+
normalized_path = os.path.normpath(file_path).lower()
|
| 180 |
+
if normalized_path not in unique_paths:
|
| 181 |
+
unique_paths.add(normalized_path)
|
| 182 |
+
unique_files.append(file_path)
|
| 183 |
+
image_files = unique_files
|
| 184 |
+
|
| 185 |
+
# Sort files for consistent processing order
|
| 186 |
+
image_files.sort()
|
| 187 |
+
|
| 188 |
+
if not image_files:
|
| 189 |
+
return {
|
| 190 |
+
'success': False,
|
| 191 |
+
'error': f"No images found in {folder_path}",
|
| 192 |
+
'results': {}
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
print(f"Found {len(image_files)} images to process")
|
| 196 |
+
|
| 197 |
+
# Use the provided save directory or create a default one
|
| 198 |
+
if save_dir is None:
|
| 199 |
+
app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 200 |
+
save_dir = os.path.join(app_dir, "saved_tags")
|
| 201 |
+
|
| 202 |
+
# Ensure the directory exists
|
| 203 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 204 |
+
|
| 205 |
+
# Process images in batches
|
| 206 |
+
results = {}
|
| 207 |
+
total_images = len(image_files)
|
| 208 |
+
processed = 0
|
| 209 |
+
|
| 210 |
+
# Process in batches
|
| 211 |
+
for i in range(0, total_images, batch_size):
|
| 212 |
+
batch_start = time.time()
|
| 213 |
+
# Get current batch of images
|
| 214 |
+
batch_files = image_files[i:i+batch_size]
|
| 215 |
+
batch_size_actual = len(batch_files)
|
| 216 |
+
|
| 217 |
+
print(f"Processing batch {i//batch_size + 1}/{(total_images + batch_size - 1)//batch_size}: {batch_size_actual} images")
|
| 218 |
+
|
| 219 |
+
if batch_size > 1:
|
| 220 |
+
# True batch processing for multiple images at once
|
| 221 |
+
try:
|
| 222 |
+
# Using batch processing if batch_size > 1
|
| 223 |
+
batch_results = process_image_batch(
|
| 224 |
+
image_paths=batch_files,
|
| 225 |
+
model=model,
|
| 226 |
+
thresholds=thresholds,
|
| 227 |
+
metadata=metadata,
|
| 228 |
+
threshold_profile=threshold_profile,
|
| 229 |
+
active_threshold=active_threshold,
|
| 230 |
+
active_category_thresholds=active_category_thresholds,
|
| 231 |
+
min_confidence=min_confidence
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Process and save results for each image in the batch
|
| 235 |
+
for j, image_path in enumerate(batch_files):
|
| 236 |
+
# Update progress if callback provided
|
| 237 |
+
if progress_callback:
|
| 238 |
+
progress_callback(processed + j, total_images, image_path)
|
| 239 |
+
|
| 240 |
+
if j < len(batch_results):
|
| 241 |
+
result = batch_results[j]
|
| 242 |
+
|
| 243 |
+
# Apply category limits if specified
|
| 244 |
+
if category_limits and result['success']:
|
| 245 |
+
# Use the apply_category_limits function instead of the inline code
|
| 246 |
+
result = apply_category_limits(result, category_limits)
|
| 247 |
+
|
| 248 |
+
# Debug print if you want
|
| 249 |
+
print(f"Applied limits for {os.path.basename(image_path)}, remaining tags: {len(result['all_tags'])}")
|
| 250 |
+
|
| 251 |
+
# Save the tags to a file
|
| 252 |
+
if result['success']:
|
| 253 |
+
output_path = save_tags_to_file(
|
| 254 |
+
image_path=image_path,
|
| 255 |
+
all_tags=result['all_tags'],
|
| 256 |
+
custom_dir=save_dir,
|
| 257 |
+
overwrite=True
|
| 258 |
+
)
|
| 259 |
+
result['output_path'] = str(output_path)
|
| 260 |
+
|
| 261 |
+
# Store the result
|
| 262 |
+
results[image_path] = result
|
| 263 |
+
else:
|
| 264 |
+
# Handle case where batch processing returned fewer results than expected
|
| 265 |
+
results[image_path] = {
|
| 266 |
+
'success': False,
|
| 267 |
+
'error': 'Batch processing error: missing result',
|
| 268 |
+
'all_tags': []
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
except Exception as e:
|
| 272 |
+
print(f"Batch processing error: {str(e)}")
|
| 273 |
+
traceback.print_exc()
|
| 274 |
+
|
| 275 |
+
# Fall back to processing images one by one in this batch
|
| 276 |
+
for j, image_path in enumerate(batch_files):
|
| 277 |
+
if progress_callback:
|
| 278 |
+
progress_callback(processed + j, total_images, image_path)
|
| 279 |
+
|
| 280 |
+
result = process_image(
|
| 281 |
+
image_path=image_path,
|
| 282 |
+
model=model,
|
| 283 |
+
thresholds=thresholds,
|
| 284 |
+
metadata=metadata,
|
| 285 |
+
threshold_profile=threshold_profile,
|
| 286 |
+
active_threshold=active_threshold,
|
| 287 |
+
active_category_thresholds=active_category_thresholds,
|
| 288 |
+
min_confidence=min_confidence
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Apply category limits if specified
|
| 292 |
+
if category_limits and result['success']:
|
| 293 |
+
# Use the apply_category_limits function
|
| 294 |
+
result = apply_category_limits(result, category_limits)
|
| 295 |
+
|
| 296 |
+
if result['success']:
|
| 297 |
+
output_path = save_tags_to_file(
|
| 298 |
+
image_path=image_path,
|
| 299 |
+
all_tags=result['all_tags'],
|
| 300 |
+
custom_dir=save_dir,
|
| 301 |
+
overwrite=True
|
| 302 |
+
)
|
| 303 |
+
result['output_path'] = str(output_path)
|
| 304 |
+
|
| 305 |
+
results[image_path] = result
|
| 306 |
+
else:
|
| 307 |
+
# Process one by one if batch_size is 1
|
| 308 |
+
for j, image_path in enumerate(batch_files):
|
| 309 |
+
if progress_callback:
|
| 310 |
+
progress_callback(processed + j, total_images, image_path)
|
| 311 |
+
|
| 312 |
+
result = process_image(
|
| 313 |
+
image_path=image_path,
|
| 314 |
+
model=model,
|
| 315 |
+
thresholds=thresholds,
|
| 316 |
+
metadata=metadata,
|
| 317 |
+
threshold_profile=threshold_profile,
|
| 318 |
+
active_threshold=active_threshold,
|
| 319 |
+
active_category_thresholds=active_category_thresholds,
|
| 320 |
+
min_confidence=min_confidence
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# Apply category limits if specified
|
| 324 |
+
if category_limits and result['success']:
|
| 325 |
+
# Use the apply_category_limits function
|
| 326 |
+
result = apply_category_limits(result, category_limits)
|
| 327 |
+
|
| 328 |
+
if result['success']:
|
| 329 |
+
output_path = save_tags_to_file(
|
| 330 |
+
image_path=image_path,
|
| 331 |
+
all_tags=result['all_tags'],
|
| 332 |
+
custom_dir=save_dir,
|
| 333 |
+
overwrite=True
|
| 334 |
+
)
|
| 335 |
+
result['output_path'] = str(output_path)
|
| 336 |
+
|
| 337 |
+
results[image_path] = result
|
| 338 |
+
|
| 339 |
+
# Update processed count
|
| 340 |
+
processed += batch_size_actual
|
| 341 |
+
|
| 342 |
+
# Calculate batch timing
|
| 343 |
+
batch_end = time.time()
|
| 344 |
+
batch_time = batch_end - batch_start
|
| 345 |
+
print(f"Batch processed in {batch_time:.2f} seconds ({batch_time/batch_size_actual:.2f} seconds per image)")
|
| 346 |
+
|
| 347 |
+
# Final progress update
|
| 348 |
+
if progress_callback:
|
| 349 |
+
progress_callback(total_images, total_images, None)
|
| 350 |
+
|
| 351 |
+
end_time = time.time()
|
| 352 |
+
total_time = end_time - start_time
|
| 353 |
+
print(f"Batch processing finished. Total time: {total_time:.2f} seconds, Average: {total_time/total_images:.2f} seconds per image")
|
| 354 |
+
|
| 355 |
+
return {
|
| 356 |
+
'success': True,
|
| 357 |
+
'total': total_images,
|
| 358 |
+
'processed': len(results),
|
| 359 |
+
'results': results,
|
| 360 |
+
'save_dir': save_dir,
|
| 361 |
+
'time_elapsed': end_time - start_time
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
def process_image_batch(image_paths, model, thresholds, metadata, threshold_profile, active_threshold, active_category_thresholds, min_confidence=0.1):
|
| 365 |
+
"""
|
| 366 |
+
Process a batch of images at once.
|
| 367 |
+
|
| 368 |
+
Args:
|
| 369 |
+
image_paths: List of paths to the images
|
| 370 |
+
model: The image tagger model
|
| 371 |
+
thresholds: Thresholds dictionary
|
| 372 |
+
metadata: Metadata dictionary
|
| 373 |
+
threshold_profile: Selected threshold profile
|
| 374 |
+
active_threshold: Overall threshold value
|
| 375 |
+
active_category_thresholds: Category-specific thresholds
|
| 376 |
+
min_confidence: Minimum confidence to include in results
|
| 377 |
+
|
| 378 |
+
Returns:
|
| 379 |
+
List of dictionaries with tags, all probabilities, and other info for each image
|
| 380 |
+
"""
|
| 381 |
+
try:
|
| 382 |
+
import torch
|
| 383 |
+
from PIL import Image
|
| 384 |
+
import torchvision.transforms as transforms
|
| 385 |
+
|
| 386 |
+
# Identify the model type we're using for better error handling
|
| 387 |
+
model_type = model.__class__.__name__
|
| 388 |
+
print(f"Running batch processing with model type: {model_type}")
|
| 389 |
+
|
| 390 |
+
# Prepare the transformation for the images
|
| 391 |
+
transform = transforms.Compose([
|
| 392 |
+
transforms.Resize((512, 512)), # Adjust based on your model's expected input
|
| 393 |
+
transforms.ToTensor(),
|
| 394 |
+
])
|
| 395 |
+
|
| 396 |
+
# Get model information
|
| 397 |
+
device = next(model.parameters()).device
|
| 398 |
+
dtype = next(model.parameters()).dtype
|
| 399 |
+
print(f"Model is using device: {device}, dtype: {dtype}")
|
| 400 |
+
|
| 401 |
+
# Load and preprocess all images
|
| 402 |
+
batch_tensor = []
|
| 403 |
+
valid_images = []
|
| 404 |
+
|
| 405 |
+
for img_path in image_paths:
|
| 406 |
+
try:
|
| 407 |
+
img = Image.open(img_path).convert('RGB')
|
| 408 |
+
img_tensor = transform(img)
|
| 409 |
+
img_tensor = img_tensor.to(device=device, dtype=dtype)
|
| 410 |
+
batch_tensor.append(img_tensor)
|
| 411 |
+
valid_images.append(img_path)
|
| 412 |
+
except Exception as e:
|
| 413 |
+
print(f"Error loading image {img_path}: {str(e)}")
|
| 414 |
+
|
| 415 |
+
if not batch_tensor:
|
| 416 |
+
return []
|
| 417 |
+
|
| 418 |
+
# Stack all tensors into a single batch
|
| 419 |
+
batch_input = torch.stack(batch_tensor)
|
| 420 |
+
|
| 421 |
+
# Process entire batch at once
|
| 422 |
+
with torch.no_grad():
|
| 423 |
+
try:
|
| 424 |
+
# Forward pass on the whole batch
|
| 425 |
+
output = model(batch_input)
|
| 426 |
+
|
| 427 |
+
# Handle tuple output format
|
| 428 |
+
if isinstance(output, tuple):
|
| 429 |
+
probs_batch = torch.sigmoid(output[1])
|
| 430 |
+
else:
|
| 431 |
+
probs_batch = torch.sigmoid(output)
|
| 432 |
+
|
| 433 |
+
# Process each image's results
|
| 434 |
+
results = []
|
| 435 |
+
for i, img_path in enumerate(valid_images):
|
| 436 |
+
probs = probs_batch[i].unsqueeze(0) # Add batch dimension back
|
| 437 |
+
|
| 438 |
+
# Extract and organize all probabilities
|
| 439 |
+
all_probs = {}
|
| 440 |
+
for idx in range(probs.size(1)):
|
| 441 |
+
prob_value = probs[0, idx].item()
|
| 442 |
+
if prob_value >= min_confidence:
|
| 443 |
+
tag, category = model.dataset.get_tag_info(idx)
|
| 444 |
+
|
| 445 |
+
if category not in all_probs:
|
| 446 |
+
all_probs[category] = []
|
| 447 |
+
|
| 448 |
+
all_probs[category].append((tag, prob_value))
|
| 449 |
+
|
| 450 |
+
# Sort tags by probability
|
| 451 |
+
for category in all_probs:
|
| 452 |
+
all_probs[category] = sorted(all_probs[category], key=lambda x: x[1], reverse=True)
|
| 453 |
+
|
| 454 |
+
# Get filtered tags
|
| 455 |
+
tags = {}
|
| 456 |
+
for category, cat_tags in all_probs.items():
|
| 457 |
+
threshold = active_category_thresholds.get(category, active_threshold) if active_category_thresholds else active_threshold
|
| 458 |
+
tags[category] = [(tag, prob) for tag, prob in cat_tags if prob >= threshold]
|
| 459 |
+
|
| 460 |
+
# Create a flat list of all tags above threshold
|
| 461 |
+
all_tags = []
|
| 462 |
+
for category, cat_tags in tags.items():
|
| 463 |
+
for tag, _ in cat_tags:
|
| 464 |
+
all_tags.append(tag)
|
| 465 |
+
|
| 466 |
+
results.append({
|
| 467 |
+
'tags': tags,
|
| 468 |
+
'all_probs': all_probs,
|
| 469 |
+
'all_tags': all_tags,
|
| 470 |
+
'success': True
|
| 471 |
+
})
|
| 472 |
+
|
| 473 |
+
return results
|
| 474 |
+
|
| 475 |
+
except RuntimeError as e:
|
| 476 |
+
# If we encounter CUDA out of memory or another runtime error,
|
| 477 |
+
# fall back to processing one by one
|
| 478 |
+
print(f"Error in batch processing: {str(e)}")
|
| 479 |
+
print("Falling back to one-by-one processing...")
|
| 480 |
+
|
| 481 |
+
# Process one by one as fallback
|
| 482 |
+
results = []
|
| 483 |
+
for i, (img_tensor, img_path) in enumerate(zip(batch_tensor, valid_images)):
|
| 484 |
+
try:
|
| 485 |
+
input_tensor = img_tensor.unsqueeze(0)
|
| 486 |
+
output = model(input_tensor)
|
| 487 |
+
|
| 488 |
+
if isinstance(output, tuple):
|
| 489 |
+
probs = torch.sigmoid(output[1])
|
| 490 |
+
else:
|
| 491 |
+
probs = torch.sigmoid(output)
|
| 492 |
+
|
| 493 |
+
# Same post-processing as before...
|
| 494 |
+
# [Code omitted for brevity]
|
| 495 |
+
|
| 496 |
+
except Exception as e:
|
| 497 |
+
print(f"Error processing image {img_path}: {str(e)}")
|
| 498 |
+
results.append({
|
| 499 |
+
'tags': {},
|
| 500 |
+
'all_probs': {},
|
| 501 |
+
'all_tags': [],
|
| 502 |
+
'success': False,
|
| 503 |
+
'error': str(e)
|
| 504 |
+
})
|
| 505 |
+
|
| 506 |
+
return results
|
| 507 |
+
|
| 508 |
+
except Exception as e:
|
| 509 |
+
print(f"Error in batch processing: {str(e)}")
|
| 510 |
+
import traceback
|
| 511 |
+
traceback.print_exc()
|
utils/model_loader.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.nn import GroupNorm, LayerNorm
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.utils.checkpoint as checkpoint
|
| 6 |
+
import timm
|
| 7 |
+
|
| 8 |
+
class ViTWrapper(nn.Module):
|
| 9 |
+
"""Wrapper to make ViT compatible with feature extraction for ImageTagger"""
|
| 10 |
+
def __init__(self, vit_model):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.vit = vit_model
|
| 13 |
+
self.out_indices = (-1,) # mimic timm.features_only
|
| 14 |
+
|
| 15 |
+
# Get patch size and embedding dim from the model
|
| 16 |
+
self.patch_size = vit_model.patch_embed.patch_size[0]
|
| 17 |
+
self.embed_dim = vit_model.embed_dim
|
| 18 |
+
|
| 19 |
+
def forward(self, x):
|
| 20 |
+
B = x.size(0)
|
| 21 |
+
|
| 22 |
+
# ➊ patch tokens
|
| 23 |
+
x = self.vit.patch_embed(x) # (B, N, C)
|
| 24 |
+
|
| 25 |
+
# ➋ prepend CLS
|
| 26 |
+
cls_tok = self.vit.cls_token.expand(B, -1, -1) # (B, 1, C)
|
| 27 |
+
x = torch.cat((cls_tok, x), dim=1) # (B, 1+N, C)
|
| 28 |
+
|
| 29 |
+
# ➌ add positional encodings (full, incl. CLS)
|
| 30 |
+
if self.vit.pos_embed is not None:
|
| 31 |
+
x = x + self.vit.pos_embed[:, : x.size(1), :]
|
| 32 |
+
|
| 33 |
+
x = self.vit.pos_drop(x)
|
| 34 |
+
|
| 35 |
+
for blk in self.vit.blocks:
|
| 36 |
+
x = blk(x)
|
| 37 |
+
|
| 38 |
+
x = self.vit.norm(x) # (B, 1+N, C)
|
| 39 |
+
|
| 40 |
+
# ➍ split back out
|
| 41 |
+
cls_final = x[:, 0] # (B, C)
|
| 42 |
+
patch_tokens = x[:, 1:] # (B, N, C)
|
| 43 |
+
|
| 44 |
+
# ➎ reshape patches to (B, C, H, W)
|
| 45 |
+
B, N, C = patch_tokens.shape
|
| 46 |
+
h = w = int(N ** 0.5) # square assumption
|
| 47 |
+
patch_features = patch_tokens.permute(0, 2, 1).reshape(B, C, h, w)
|
| 48 |
+
|
| 49 |
+
# Return **both**: (patch map, CLS)
|
| 50 |
+
return patch_features, cls_final
|
| 51 |
+
|
| 52 |
+
def set_grad_checkpointing(self, enable=True):
|
| 53 |
+
"""Enable gradient checkpointing if supported"""
|
| 54 |
+
if hasattr(self.vit, 'set_grad_checkpointing'):
|
| 55 |
+
self.vit.set_grad_checkpointing(enable)
|
| 56 |
+
return True
|
| 57 |
+
return False
|
| 58 |
+
|
| 59 |
+
class ImageTagger(nn.Module):
|
| 60 |
+
"""
|
| 61 |
+
ImageTagger with Vision Transformer backbone
|
| 62 |
+
"""
|
| 63 |
+
def __init__(self, total_tags, dataset, model_name='vit_base_patch16_224',
|
| 64 |
+
num_heads=16, dropout=0.1, pretrained=True, tag_context_size=256,
|
| 65 |
+
use_gradient_checkpointing=False, img_size=224):
|
| 66 |
+
super().__init__()
|
| 67 |
+
|
| 68 |
+
# Store checkpointing config
|
| 69 |
+
self.use_gradient_checkpointing = use_gradient_checkpointing
|
| 70 |
+
self.model_name = model_name
|
| 71 |
+
self.img_size = img_size
|
| 72 |
+
|
| 73 |
+
# Debug and stats flags
|
| 74 |
+
self._flags = {
|
| 75 |
+
'debug': False,
|
| 76 |
+
'model_stats': True
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
# Core model config
|
| 80 |
+
self.dataset = dataset
|
| 81 |
+
self.tag_context_size = tag_context_size
|
| 82 |
+
self.total_tags = total_tags
|
| 83 |
+
|
| 84 |
+
print(f"🏗️ Building ImageTagger with ViT backbone and {total_tags} tags")
|
| 85 |
+
print(f" Backbone: {model_name}")
|
| 86 |
+
print(f" Image size: {img_size}x{img_size}")
|
| 87 |
+
print(f" Tag context size: {tag_context_size}")
|
| 88 |
+
print(f" Gradient checkpointing: {use_gradient_checkpointing}")
|
| 89 |
+
print(f" 🎯 Custom embeddings, PyTorch native attention, no ground truth inclusion")
|
| 90 |
+
|
| 91 |
+
# 1. Vision Transformer Backbone
|
| 92 |
+
print("📦 Loading Vision Transformer backbone...")
|
| 93 |
+
self._load_vit_backbone()
|
| 94 |
+
|
| 95 |
+
# Get backbone dimensions by running a test forward pass
|
| 96 |
+
self._determine_backbone_dimensions()
|
| 97 |
+
|
| 98 |
+
self.embedding_dim = self.backbone.embed_dim
|
| 99 |
+
|
| 100 |
+
# 2. Custom Tag Embeddings (no CLIP)
|
| 101 |
+
print("🎯 Using custom tag embeddings (no CLIP)")
|
| 102 |
+
self.tag_embedding = nn.Embedding(total_tags, self.embedding_dim)
|
| 103 |
+
|
| 104 |
+
# 3. Shared weights approach - tag bias for initial predictions
|
| 105 |
+
print("🔗 Using shared weights between initial head and tag embeddings")
|
| 106 |
+
self.tag_bias = nn.Parameter(torch.zeros(total_tags))
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# 4. Image token extraction (for attention AND global pooling)
|
| 110 |
+
self.image_token_proj = nn.Identity()
|
| 111 |
+
|
| 112 |
+
# 5. Tags-as-queries cross-attention (using PyTorch's optimized implementation)
|
| 113 |
+
self.cross_attention = nn.MultiheadAttention(
|
| 114 |
+
embed_dim=self.embedding_dim,
|
| 115 |
+
num_heads=num_heads,
|
| 116 |
+
dropout=dropout,
|
| 117 |
+
batch_first=True # Use (batch, seq, feature) format
|
| 118 |
+
)
|
| 119 |
+
self.cross_norm = nn.LayerNorm(self.embedding_dim)
|
| 120 |
+
|
| 121 |
+
# Initialize weights
|
| 122 |
+
self._init_weights()
|
| 123 |
+
|
| 124 |
+
# Enable gradient checkpointing
|
| 125 |
+
if self.use_gradient_checkpointing:
|
| 126 |
+
self._enable_gradient_checkpointing()
|
| 127 |
+
|
| 128 |
+
print(f"✅ ImageTagger with ViT initialized!")
|
| 129 |
+
self._print_parameter_count()
|
| 130 |
+
|
| 131 |
+
def _load_vit_backbone(self):
|
| 132 |
+
"""Load Vision Transformer model from timm"""
|
| 133 |
+
print(f" Loading from timm: {self.model_name}")
|
| 134 |
+
|
| 135 |
+
# Load the ViT model (not features_only, we want the full model for token extraction)
|
| 136 |
+
vit_model = timm.create_model(
|
| 137 |
+
self.model_name,
|
| 138 |
+
pretrained=True,
|
| 139 |
+
img_size=self.img_size,
|
| 140 |
+
num_classes=0 # Remove classification head
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Wrap it in our compatibility layer
|
| 144 |
+
self.backbone = ViTWrapper(vit_model)
|
| 145 |
+
|
| 146 |
+
print(f" ✅ ViT loaded successfully")
|
| 147 |
+
print(f" Patch size: {self.backbone.patch_size}x{self.backbone.patch_size}")
|
| 148 |
+
print(f" Embed dim: {self.backbone.embed_dim}")
|
| 149 |
+
|
| 150 |
+
def _determine_backbone_dimensions(self):
|
| 151 |
+
"""Determine backbone output dimensions"""
|
| 152 |
+
print(" 🔍 Determining backbone dimensions...")
|
| 153 |
+
|
| 154 |
+
with torch.no_grad(), torch.autocast('cuda', dtype=torch.bfloat16):
|
| 155 |
+
# Create a dummy input
|
| 156 |
+
dummy_input = torch.randn(1, 3, self.img_size, self.img_size)
|
| 157 |
+
|
| 158 |
+
# Get features
|
| 159 |
+
backbone_features, cls_dummy = self.backbone(dummy_input)
|
| 160 |
+
feature_tensor = backbone_features
|
| 161 |
+
|
| 162 |
+
self.backbone_dim = feature_tensor.shape[1]
|
| 163 |
+
self.feature_map_size = feature_tensor.shape[2]
|
| 164 |
+
|
| 165 |
+
print(f" Backbone output: {self.backbone_dim}D, {self.feature_map_size}x{self.feature_map_size} spatial")
|
| 166 |
+
print(f" Total patch tokens: {self.feature_map_size * self.feature_map_size}")
|
| 167 |
+
|
| 168 |
+
def _enable_gradient_checkpointing(self):
|
| 169 |
+
"""Enable gradient checkpointing for memory efficiency"""
|
| 170 |
+
print("🔄 Enabling gradient checkpointing...")
|
| 171 |
+
|
| 172 |
+
# Enable checkpointing for ViT backbone
|
| 173 |
+
if self.backbone.set_grad_checkpointing(True):
|
| 174 |
+
print(" ✅ ViT backbone checkpointing enabled")
|
| 175 |
+
else:
|
| 176 |
+
print(" ⚠️ ViT backbone doesn't support built-in checkpointing, will checkpoint manually")
|
| 177 |
+
|
| 178 |
+
def _checkpoint_backbone(self, x):
|
| 179 |
+
"""Wrapper for backbone with gradient checkpointing"""
|
| 180 |
+
if self.use_gradient_checkpointing and self.training:
|
| 181 |
+
return checkpoint.checkpoint(self.backbone, x, use_reentrant=False)
|
| 182 |
+
else:
|
| 183 |
+
return self.backbone(x)
|
| 184 |
+
|
| 185 |
+
def _checkpoint_image_proj(self, x):
|
| 186 |
+
"""Wrapper for image projection with gradient checkpointing"""
|
| 187 |
+
if self.use_gradient_checkpointing and self.training:
|
| 188 |
+
return checkpoint.checkpoint(self.image_token_proj, x, use_reentrant=False)
|
| 189 |
+
else:
|
| 190 |
+
return self.image_token_proj(x)
|
| 191 |
+
|
| 192 |
+
def _checkpoint_cross_attention(self, query, key, value):
|
| 193 |
+
"""Wrapper for cross attention with gradient checkpointing"""
|
| 194 |
+
def _attention_forward(q, k, v):
|
| 195 |
+
attended_features, _ = self.cross_attention(query=q, key=k, value=v)
|
| 196 |
+
return self.cross_norm(attended_features)
|
| 197 |
+
|
| 198 |
+
if self.use_gradient_checkpointing and self.training:
|
| 199 |
+
return checkpoint.checkpoint(_attention_forward, query, key, value, use_reentrant=False)
|
| 200 |
+
else:
|
| 201 |
+
return _attention_forward(query, key, value)
|
| 202 |
+
|
| 203 |
+
def _checkpoint_candidate_selection(self, initial_logits):
|
| 204 |
+
"""Wrapper for candidate selection with gradient checkpointing"""
|
| 205 |
+
def _candidate_forward(logits):
|
| 206 |
+
return self._get_candidate_tags(logits)
|
| 207 |
+
|
| 208 |
+
if self.use_gradient_checkpointing and self.training:
|
| 209 |
+
return checkpoint.checkpoint(_candidate_forward, initial_logits, use_reentrant=False)
|
| 210 |
+
else:
|
| 211 |
+
return _candidate_forward(initial_logits)
|
| 212 |
+
|
| 213 |
+
def _checkpoint_final_scoring(self, attended_features, candidate_indices):
|
| 214 |
+
"""Wrapper for final scoring with gradient checkpointing"""
|
| 215 |
+
def _scoring_forward(features, indices):
|
| 216 |
+
emb = self.tag_embedding(indices)
|
| 217 |
+
# BF16 in, BF16 out
|
| 218 |
+
return (features * emb).sum(dim=-1)
|
| 219 |
+
|
| 220 |
+
if self.use_gradient_checkpointing and self.training:
|
| 221 |
+
return checkpoint.checkpoint(_scoring_forward, attended_features, candidate_indices, use_reentrant=False)
|
| 222 |
+
else:
|
| 223 |
+
return _scoring_forward(attended_features, candidate_indices)
|
| 224 |
+
|
| 225 |
+
def _init_weights(self):
|
| 226 |
+
"""Initialize weights for new modules"""
|
| 227 |
+
def _init_layer(layer):
|
| 228 |
+
if isinstance(layer, nn.Linear):
|
| 229 |
+
nn.init.xavier_uniform_(layer.weight)
|
| 230 |
+
if layer.bias is not None:
|
| 231 |
+
nn.init.zeros_(layer.bias)
|
| 232 |
+
elif isinstance(layer, nn.Conv2d):
|
| 233 |
+
nn.init.kaiming_normal_(layer.weight, mode='fan_out', nonlinearity='relu')
|
| 234 |
+
if layer.bias is not None:
|
| 235 |
+
nn.init.zeros_(layer.bias)
|
| 236 |
+
elif isinstance(layer, nn.Embedding):
|
| 237 |
+
nn.init.normal_(layer.weight, mean=0, std=0.02)
|
| 238 |
+
|
| 239 |
+
# Initialize new components
|
| 240 |
+
self.image_token_proj.apply(_init_layer)
|
| 241 |
+
|
| 242 |
+
# Initialize tag embeddings with normal distribution
|
| 243 |
+
nn.init.normal_(self.tag_embedding.weight, mean=0, std=0.02)
|
| 244 |
+
|
| 245 |
+
# Initialize tag bias
|
| 246 |
+
nn.init.zeros_(self.tag_bias)
|
| 247 |
+
|
| 248 |
+
def _print_parameter_count(self):
|
| 249 |
+
"""Print parameter statistics"""
|
| 250 |
+
total_params = sum(p.numel() for p in self.parameters())
|
| 251 |
+
trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
| 252 |
+
backbone_params = sum(p.numel() for p in self.backbone.parameters())
|
| 253 |
+
|
| 254 |
+
print(f"📊 Parameter Statistics:")
|
| 255 |
+
print(f" Total parameters: {total_params/1e6:.1f}M")
|
| 256 |
+
print(f" Trainable parameters: {trainable_params/1e6:.1f}M")
|
| 257 |
+
print(f" Frozen parameters: {(total_params-trainable_params)/1e6:.1f}M")
|
| 258 |
+
print(f" Backbone parameters: {backbone_params/1e6:.1f}M")
|
| 259 |
+
|
| 260 |
+
if self.use_gradient_checkpointing:
|
| 261 |
+
print(f" 🔄 Gradient checkpointing enabled for memory efficiency")
|
| 262 |
+
|
| 263 |
+
@property
|
| 264 |
+
def debug(self):
|
| 265 |
+
return self._flags['debug']
|
| 266 |
+
|
| 267 |
+
@property
|
| 268 |
+
def model_stats(self):
|
| 269 |
+
return self._flags['model_stats']
|
| 270 |
+
|
| 271 |
+
def _get_candidate_tags(self, initial_logits, target_tags=None, hard_negatives=None):
|
| 272 |
+
"""Select candidate tags - no ground truth inclusion"""
|
| 273 |
+
batch_size = initial_logits.size(0)
|
| 274 |
+
|
| 275 |
+
# Simply select top K candidates based on initial predictions
|
| 276 |
+
top_probs, top_indices = torch.topk(
|
| 277 |
+
torch.sigmoid(initial_logits),
|
| 278 |
+
k=min(self.tag_context_size, self.total_tags),
|
| 279 |
+
dim=1, largest=True, sorted=True
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
return top_indices
|
| 283 |
+
|
| 284 |
+
def _analyze_predictions(self, predictions, tag_indices):
|
| 285 |
+
"""Analyze prediction patterns"""
|
| 286 |
+
if not self.model_stats:
|
| 287 |
+
return {}
|
| 288 |
+
|
| 289 |
+
if torch._dynamo.is_compiling():
|
| 290 |
+
return {}
|
| 291 |
+
|
| 292 |
+
with torch.no_grad(), torch.autocast('cuda', dtype=torch.bfloat16):
|
| 293 |
+
probs = torch.sigmoid(predictions)
|
| 294 |
+
relevant_probs = torch.gather(probs, 1, tag_indices)
|
| 295 |
+
|
| 296 |
+
return {
|
| 297 |
+
'prediction_confidence': relevant_probs.mean().item(),
|
| 298 |
+
'prediction_entropy': -(relevant_probs * torch.log(relevant_probs + 1e-9)).mean().item(),
|
| 299 |
+
'high_confidence_ratio': (relevant_probs > 0.7).float().mean().item(),
|
| 300 |
+
'above_threshold_ratio': (relevant_probs > 0.5).float().mean().item(),
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
def forward(self, x, targets=None, hard_negatives=None):
|
| 304 |
+
"""
|
| 305 |
+
Forward pass with ViT backbone, CLS token support and gradient-checkpointing.
|
| 306 |
+
All arithmetic tensors stay in the backbone’s dtype (BF16 under autocast,
|
| 307 |
+
FP32 otherwise). Anything that must mix dtypes is cast to match.
|
| 308 |
+
"""
|
| 309 |
+
batch_size = x.size(0)
|
| 310 |
+
model_stats = {} if self.model_stats else {}
|
| 311 |
+
|
| 312 |
+
# ------------------------------------------------------------------
|
| 313 |
+
# 1. Backbone → patch map + CLS token
|
| 314 |
+
# ------------------------------------------------------------------
|
| 315 |
+
patch_map, cls_token = self._checkpoint_backbone(x) # patch_map: [B, C, H, W]
|
| 316 |
+
# cls_token: [B, C]
|
| 317 |
+
|
| 318 |
+
# ------------------------------------------------------------------
|
| 319 |
+
# 2. Tokens → global image vector
|
| 320 |
+
# ------------------------------------------------------------------
|
| 321 |
+
image_tokens_4d = self._checkpoint_image_proj(patch_map) # [B, C, H, W]
|
| 322 |
+
image_tokens = image_tokens_4d.flatten(2).transpose(1, 2) # [B, N, C]
|
| 323 |
+
|
| 324 |
+
# “Dual-pool”: mean-pool patches ⊕ CLS
|
| 325 |
+
global_features = 0.5 * (image_tokens.mean(dim=1, dtype=image_tokens.dtype) + cls_token) # [B, C]
|
| 326 |
+
|
| 327 |
+
compute_dtype = global_features.dtype # BF16 or FP32
|
| 328 |
+
|
| 329 |
+
# ------------------------------------------------------------------
|
| 330 |
+
# 3. Initial logits (shared weights)
|
| 331 |
+
# ------------------------------------------------------------------
|
| 332 |
+
tag_weights = self.tag_embedding.weight.to(compute_dtype) # [T, C]
|
| 333 |
+
tag_bias = self.tag_bias.to(compute_dtype) # [T]
|
| 334 |
+
|
| 335 |
+
initial_logits = global_features @ tag_weights.t() + tag_bias # [B, T]
|
| 336 |
+
initial_logits = initial_logits.to(compute_dtype) # keep dtype uniform
|
| 337 |
+
initial_preds = initial_logits # alias
|
| 338 |
+
|
| 339 |
+
# ------------------------------------------------------------------
|
| 340 |
+
# 4. Candidate set
|
| 341 |
+
# ------------------------------------------------------------------
|
| 342 |
+
candidate_indices = self._checkpoint_candidate_selection(initial_logits) # [B, K]
|
| 343 |
+
|
| 344 |
+
tag_embeddings = self.tag_embedding(candidate_indices).to(compute_dtype) # [B, K, C]
|
| 345 |
+
|
| 346 |
+
attended_features = self._checkpoint_cross_attention( # [B, K, C]
|
| 347 |
+
tag_embeddings, image_tokens, image_tokens
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
# ------------------------------------------------------------------
|
| 351 |
+
# 5. Score candidates & scatter back
|
| 352 |
+
# ------------------------------------------------------------------
|
| 353 |
+
candidate_logits = self._checkpoint_final_scoring(attended_features, candidate_indices) # [B, K]
|
| 354 |
+
|
| 355 |
+
# --- align dtypes so scatter never throws ---
|
| 356 |
+
if candidate_logits.dtype != initial_logits.dtype:
|
| 357 |
+
candidate_logits = candidate_logits.to(initial_logits.dtype)
|
| 358 |
+
|
| 359 |
+
refined_logits = initial_logits.clone()
|
| 360 |
+
refined_logits.scatter_(1, candidate_indices, candidate_logits)
|
| 361 |
+
refined_preds = refined_logits
|
| 362 |
+
|
| 363 |
+
# ------------------------------------------------------------------
|
| 364 |
+
# 6. Optional stats
|
| 365 |
+
# ------------------------------------------------------------------
|
| 366 |
+
if self.model_stats and targets is not None and not torch._dynamo.is_compiling():
|
| 367 |
+
model_stats['initial_prediction_stats'] = self._analyze_predictions(initial_preds,
|
| 368 |
+
candidate_indices)
|
| 369 |
+
model_stats['refined_prediction_stats'] = self._analyze_predictions(refined_preds,
|
| 370 |
+
candidate_indices)
|
| 371 |
+
|
| 372 |
+
return {
|
| 373 |
+
'initial_predictions': initial_preds,
|
| 374 |
+
'refined_predictions': refined_preds,
|
| 375 |
+
'selected_candidates': candidate_indices,
|
| 376 |
+
'model_stats': model_stats
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
def predict
|
utils/onnx_processing.py
ADDED
|
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ONNX-based batch image processing for the Image Tagger application.
|
| 3 |
+
Updated with proper ImageNet normalization and new metadata format.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
import time
|
| 9 |
+
import traceback
|
| 10 |
+
import numpy as np
|
| 11 |
+
import glob
|
| 12 |
+
import onnxruntime as ort
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import torchvision.transforms as transforms
|
| 15 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
+
|
| 17 |
+
def preprocess_image(image_path, image_size=512):
|
| 18 |
+
"""
|
| 19 |
+
Process an image for ImageTagger inference with proper ImageNet normalization
|
| 20 |
+
"""
|
| 21 |
+
if not os.path.exists(image_path):
|
| 22 |
+
raise ValueError(f"Image not found at path: {image_path}")
|
| 23 |
+
|
| 24 |
+
# ImageNet normalization - CRITICAL for your model
|
| 25 |
+
transform = transforms.Compose([
|
| 26 |
+
transforms.ToTensor(),
|
| 27 |
+
transforms.Normalize(
|
| 28 |
+
mean=[0.485, 0.456, 0.406],
|
| 29 |
+
std=[0.229, 0.224, 0.225]
|
| 30 |
+
)
|
| 31 |
+
])
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
with Image.open(image_path) as img:
|
| 35 |
+
# Convert RGBA or Palette images to RGB
|
| 36 |
+
if img.mode in ('RGBA', 'P'):
|
| 37 |
+
img = img.convert('RGB')
|
| 38 |
+
|
| 39 |
+
# Get original dimensions
|
| 40 |
+
width, height = img.size
|
| 41 |
+
aspect_ratio = width / height
|
| 42 |
+
|
| 43 |
+
# Calculate new dimensions to maintain aspect ratio
|
| 44 |
+
if aspect_ratio > 1:
|
| 45 |
+
new_width = image_size
|
| 46 |
+
new_height = int(new_width / aspect_ratio)
|
| 47 |
+
else:
|
| 48 |
+
new_height = image_size
|
| 49 |
+
new_width = int(new_height * aspect_ratio)
|
| 50 |
+
|
| 51 |
+
# Resize with LANCZOS filter
|
| 52 |
+
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 53 |
+
|
| 54 |
+
# Create new image with padding (use ImageNet mean for padding)
|
| 55 |
+
# Using RGB values close to ImageNet mean: (0.485*255, 0.456*255, 0.406*255)
|
| 56 |
+
pad_color = (124, 116, 104)
|
| 57 |
+
new_image = Image.new('RGB', (image_size, image_size), pad_color)
|
| 58 |
+
paste_x = (image_size - new_width) // 2
|
| 59 |
+
paste_y = (image_size - new_height) // 2
|
| 60 |
+
new_image.paste(img, (paste_x, paste_y))
|
| 61 |
+
|
| 62 |
+
# Apply transforms (including ImageNet normalization)
|
| 63 |
+
img_tensor = transform(new_image)
|
| 64 |
+
return img_tensor.numpy()
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
raise Exception(f"Error processing {image_path}: {str(e)}")
|
| 68 |
+
|
| 69 |
+
def process_single_image_onnx(image_path, model_path, metadata, threshold_profile="Overall",
|
| 70 |
+
active_threshold=0.35, active_category_thresholds=None,
|
| 71 |
+
min_confidence=0.1):
|
| 72 |
+
"""
|
| 73 |
+
Process a single image using ONNX model with new metadata format
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
image_path: Path to the image file
|
| 77 |
+
model_path: Path to the ONNX model file
|
| 78 |
+
metadata: Model metadata dictionary
|
| 79 |
+
threshold_profile: The threshold profile being used
|
| 80 |
+
active_threshold: Overall threshold value
|
| 81 |
+
active_category_thresholds: Category-specific thresholds
|
| 82 |
+
min_confidence: Minimum confidence to include in results
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
Dictionary with tags and probabilities
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
# Create ONNX tagger for this image (or reuse an existing one)
|
| 89 |
+
if hasattr(process_single_image_onnx, 'tagger'):
|
| 90 |
+
tagger = process_single_image_onnx.tagger
|
| 91 |
+
else:
|
| 92 |
+
# Create new tagger
|
| 93 |
+
tagger = ONNXImageTagger(model_path, metadata)
|
| 94 |
+
# Cache it for future calls
|
| 95 |
+
process_single_image_onnx.tagger = tagger
|
| 96 |
+
|
| 97 |
+
# Preprocess the image
|
| 98 |
+
start_time = time.time()
|
| 99 |
+
img_array = preprocess_image(image_path)
|
| 100 |
+
|
| 101 |
+
# Run inference
|
| 102 |
+
results = tagger.predict_batch(
|
| 103 |
+
[img_array],
|
| 104 |
+
threshold=active_threshold,
|
| 105 |
+
category_thresholds=active_category_thresholds,
|
| 106 |
+
min_confidence=min_confidence
|
| 107 |
+
)
|
| 108 |
+
inference_time = time.time() - start_time
|
| 109 |
+
|
| 110 |
+
if results:
|
| 111 |
+
result = results[0]
|
| 112 |
+
result['inference_time'] = inference_time
|
| 113 |
+
result['success'] = True
|
| 114 |
+
return result
|
| 115 |
+
else:
|
| 116 |
+
return {
|
| 117 |
+
'success': False,
|
| 118 |
+
'error': 'Failed to process image',
|
| 119 |
+
'all_tags': [],
|
| 120 |
+
'all_probs': {},
|
| 121 |
+
'tags': {}
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"Error in process_single_image_onnx: {str(e)}")
|
| 126 |
+
traceback.print_exc()
|
| 127 |
+
return {
|
| 128 |
+
'success': False,
|
| 129 |
+
'error': str(e),
|
| 130 |
+
'all_tags': [],
|
| 131 |
+
'all_probs': {},
|
| 132 |
+
'tags': {}
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
def preprocess_images_parallel(image_paths, image_size=512, max_workers=8):
|
| 136 |
+
"""Process multiple images in parallel"""
|
| 137 |
+
processed_images = []
|
| 138 |
+
valid_paths = []
|
| 139 |
+
|
| 140 |
+
# Define a worker function
|
| 141 |
+
def process_single_image(path):
|
| 142 |
+
try:
|
| 143 |
+
return preprocess_image(path, image_size), path
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print(f"Error processing {path}: {str(e)}")
|
| 146 |
+
return None, path
|
| 147 |
+
|
| 148 |
+
# Process images in parallel
|
| 149 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 150 |
+
results = list(executor.map(process_single_image, image_paths))
|
| 151 |
+
|
| 152 |
+
# Filter results
|
| 153 |
+
for img_array, path in results:
|
| 154 |
+
if img_array is not None:
|
| 155 |
+
processed_images.append(img_array)
|
| 156 |
+
valid_paths.append(path)
|
| 157 |
+
|
| 158 |
+
return processed_images, valid_paths
|
| 159 |
+
|
| 160 |
+
def apply_category_limits(result, category_limits):
|
| 161 |
+
"""
|
| 162 |
+
Apply category limits to a result dictionary.
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
result: Result dictionary containing tags and all_tags
|
| 166 |
+
category_limits: Dictionary mapping categories to their tag limits
|
| 167 |
+
(0 = exclude category, -1 = no limit/include all)
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
Updated result dictionary with limits applied
|
| 171 |
+
"""
|
| 172 |
+
if not category_limits or not result['success']:
|
| 173 |
+
return result
|
| 174 |
+
|
| 175 |
+
# Get the filtered tags
|
| 176 |
+
filtered_tags = result['tags']
|
| 177 |
+
|
| 178 |
+
# Apply limits to each category
|
| 179 |
+
for category, cat_tags in list(filtered_tags.items()):
|
| 180 |
+
# Get limit for this category, default to -1 (no limit)
|
| 181 |
+
limit = category_limits.get(category, -1)
|
| 182 |
+
|
| 183 |
+
if limit == 0:
|
| 184 |
+
# Exclude this category entirely
|
| 185 |
+
del filtered_tags[category]
|
| 186 |
+
elif limit > 0 and len(cat_tags) > limit:
|
| 187 |
+
# Limit to top N tags for this category
|
| 188 |
+
filtered_tags[category] = cat_tags[:limit]
|
| 189 |
+
|
| 190 |
+
# Regenerate all_tags list after applying limits
|
| 191 |
+
all_tags = []
|
| 192 |
+
for category, cat_tags in filtered_tags.items():
|
| 193 |
+
for tag, _ in cat_tags:
|
| 194 |
+
all_tags.append(tag)
|
| 195 |
+
|
| 196 |
+
# Update the result with limited tags
|
| 197 |
+
result['tags'] = filtered_tags
|
| 198 |
+
result['all_tags'] = all_tags
|
| 199 |
+
|
| 200 |
+
return result
|
| 201 |
+
|
| 202 |
+
class ONNXImageTagger:
|
| 203 |
+
"""ONNX-based image tagger for fast batch inference with updated metadata format"""
|
| 204 |
+
|
| 205 |
+
def __init__(self, model_path, metadata):
|
| 206 |
+
# Load model
|
| 207 |
+
self.model_path = model_path
|
| 208 |
+
try:
|
| 209 |
+
self.session = ort.InferenceSession(
|
| 210 |
+
model_path,
|
| 211 |
+
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
|
| 212 |
+
)
|
| 213 |
+
print(f"Using providers: {self.session.get_providers()}")
|
| 214 |
+
except Exception as e:
|
| 215 |
+
print(f"CUDA not available, using CPU: {e}")
|
| 216 |
+
self.session = ort.InferenceSession(
|
| 217 |
+
model_path,
|
| 218 |
+
providers=['CPUExecutionProvider']
|
| 219 |
+
)
|
| 220 |
+
print(f"Using providers: {self.session.get_providers()}")
|
| 221 |
+
|
| 222 |
+
# Store metadata (passed as dict, not loaded from file)
|
| 223 |
+
self.metadata = metadata
|
| 224 |
+
|
| 225 |
+
# Extract tag mappings from new metadata structure
|
| 226 |
+
if 'dataset_info' in metadata:
|
| 227 |
+
# New metadata format
|
| 228 |
+
self.tag_mapping = metadata['dataset_info']['tag_mapping']
|
| 229 |
+
self.idx_to_tag = self.tag_mapping['idx_to_tag']
|
| 230 |
+
self.tag_to_category = self.tag_mapping['tag_to_category']
|
| 231 |
+
self.total_tags = metadata['dataset_info']['total_tags']
|
| 232 |
+
else:
|
| 233 |
+
# Fallback for older format
|
| 234 |
+
self.idx_to_tag = metadata.get('idx_to_tag', {})
|
| 235 |
+
self.tag_to_category = metadata.get('tag_to_category', {})
|
| 236 |
+
self.total_tags = metadata.get('total_tags', len(self.idx_to_tag))
|
| 237 |
+
|
| 238 |
+
# Get input name
|
| 239 |
+
self.input_name = self.session.get_inputs()[0].name
|
| 240 |
+
print(f"Model loaded successfully. Input name: {self.input_name}")
|
| 241 |
+
print(f"Total tags: {self.total_tags}, Categories: {len(set(self.tag_to_category.values()))}")
|
| 242 |
+
|
| 243 |
+
def predict_batch(self, image_arrays, threshold=0.5, category_thresholds=None, min_confidence=0.1):
|
| 244 |
+
"""Run batch inference on preprocessed image arrays"""
|
| 245 |
+
# Stack arrays into batch
|
| 246 |
+
batch_input = np.stack(image_arrays)
|
| 247 |
+
|
| 248 |
+
# Run inference
|
| 249 |
+
start_time = time.time()
|
| 250 |
+
outputs = self.session.run(None, {self.input_name: batch_input})
|
| 251 |
+
inference_time = time.time() - start_time
|
| 252 |
+
print(f"Batch inference completed in {inference_time:.4f} seconds ({inference_time/len(image_arrays):.4f} s/image)")
|
| 253 |
+
|
| 254 |
+
# Process outputs - handle both single and multi-output models
|
| 255 |
+
if len(outputs) >= 2:
|
| 256 |
+
# Multi-output model (initial_predictions, refined_predictions, selected_candidates)
|
| 257 |
+
initial_logits = outputs[0]
|
| 258 |
+
refined_logits = outputs[1]
|
| 259 |
+
# Use refined predictions as main output
|
| 260 |
+
main_logits = refined_logits
|
| 261 |
+
print(f"Using refined predictions (shape: {refined_logits.shape})")
|
| 262 |
+
else:
|
| 263 |
+
# Single output model
|
| 264 |
+
main_logits = outputs[0]
|
| 265 |
+
print(f"Using single output (shape: {main_logits.shape})")
|
| 266 |
+
|
| 267 |
+
# Apply sigmoid to get probabilities
|
| 268 |
+
main_probs = 1.0 / (1.0 + np.exp(-main_logits))
|
| 269 |
+
|
| 270 |
+
# Process results for each image in batch
|
| 271 |
+
batch_results = []
|
| 272 |
+
|
| 273 |
+
for i in range(main_probs.shape[0]):
|
| 274 |
+
probs = main_probs[i]
|
| 275 |
+
|
| 276 |
+
# Extract and organize all probabilities
|
| 277 |
+
all_probs = {}
|
| 278 |
+
for idx in range(probs.shape[0]):
|
| 279 |
+
prob_value = float(probs[idx])
|
| 280 |
+
if prob_value >= min_confidence:
|
| 281 |
+
idx_str = str(idx)
|
| 282 |
+
tag_name = self.idx_to_tag.get(idx_str, f"unknown-{idx}")
|
| 283 |
+
category = self.tag_to_category.get(tag_name, "general")
|
| 284 |
+
|
| 285 |
+
if category not in all_probs:
|
| 286 |
+
all_probs[category] = []
|
| 287 |
+
|
| 288 |
+
all_probs[category].append((tag_name, prob_value))
|
| 289 |
+
|
| 290 |
+
# Sort tags by probability within each category
|
| 291 |
+
for category in all_probs:
|
| 292 |
+
all_probs[category] = sorted(
|
| 293 |
+
all_probs[category],
|
| 294 |
+
key=lambda x: x[1],
|
| 295 |
+
reverse=True
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
# Get the filtered tags based on the selected threshold
|
| 299 |
+
tags = {}
|
| 300 |
+
for category, cat_tags in all_probs.items():
|
| 301 |
+
# Use category-specific threshold if available
|
| 302 |
+
if category_thresholds and category in category_thresholds:
|
| 303 |
+
cat_threshold = category_thresholds[category]
|
| 304 |
+
else:
|
| 305 |
+
cat_threshold = threshold
|
| 306 |
+
|
| 307 |
+
tags[category] = [(tag, prob) for tag, prob in cat_tags if prob >= cat_threshold]
|
| 308 |
+
|
| 309 |
+
# Create a flat list of all tags above threshold
|
| 310 |
+
all_tags = []
|
| 311 |
+
for category, cat_tags in tags.items():
|
| 312 |
+
for tag, _ in cat_tags:
|
| 313 |
+
all_tags.append(tag)
|
| 314 |
+
|
| 315 |
+
batch_results.append({
|
| 316 |
+
'tags': tags,
|
| 317 |
+
'all_probs': all_probs,
|
| 318 |
+
'all_tags': all_tags,
|
| 319 |
+
'success': True
|
| 320 |
+
})
|
| 321 |
+
|
| 322 |
+
return batch_results
|
| 323 |
+
|
| 324 |
+
def batch_process_images_onnx(folder_path, model_path, metadata_path, threshold_profile,
|
| 325 |
+
active_threshold, active_category_thresholds, save_dir=None,
|
| 326 |
+
progress_callback=None, min_confidence=0.1, batch_size=16,
|
| 327 |
+
category_limits=None):
|
| 328 |
+
"""
|
| 329 |
+
Process all images in a folder using the ONNX model with new metadata format.
|
| 330 |
+
|
| 331 |
+
Args:
|
| 332 |
+
folder_path: Path to folder containing images
|
| 333 |
+
model_path: Path to the ONNX model file
|
| 334 |
+
metadata_path: Path to the model metadata file
|
| 335 |
+
threshold_profile: Selected threshold profile
|
| 336 |
+
active_threshold: Overall threshold value
|
| 337 |
+
active_category_thresholds: Category-specific thresholds
|
| 338 |
+
save_dir: Directory to save tag files (if None uses default)
|
| 339 |
+
progress_callback: Optional callback for progress updates
|
| 340 |
+
min_confidence: Minimum confidence threshold
|
| 341 |
+
batch_size: Number of images to process at once
|
| 342 |
+
category_limits: Dictionary mapping categories to their tag limits
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
Dictionary with results for each image
|
| 346 |
+
"""
|
| 347 |
+
from utils.file_utils import save_tags_to_file # Import here to avoid circular imports
|
| 348 |
+
|
| 349 |
+
# Find all image files in the folder
|
| 350 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png']
|
| 351 |
+
image_files = []
|
| 352 |
+
|
| 353 |
+
for ext in image_extensions:
|
| 354 |
+
image_files.extend(glob.glob(os.path.join(folder_path, ext)))
|
| 355 |
+
image_files.extend(glob.glob(os.path.join(folder_path, ext.upper())))
|
| 356 |
+
|
| 357 |
+
# Remove duplicates (Windows case-insensitive filesystems)
|
| 358 |
+
if os.name == 'nt': # Windows
|
| 359 |
+
unique_paths = set()
|
| 360 |
+
unique_files = []
|
| 361 |
+
for file_path in image_files:
|
| 362 |
+
normalized_path = os.path.normpath(file_path).lower()
|
| 363 |
+
if normalized_path not in unique_paths:
|
| 364 |
+
unique_paths.add(normalized_path)
|
| 365 |
+
unique_files.append(file_path)
|
| 366 |
+
image_files = unique_files
|
| 367 |
+
|
| 368 |
+
if not image_files:
|
| 369 |
+
return {
|
| 370 |
+
'success': False,
|
| 371 |
+
'error': f"No images found in {folder_path}",
|
| 372 |
+
'results': {}
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
# Use the provided save directory or create a default one
|
| 376 |
+
if save_dir is None:
|
| 377 |
+
app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 378 |
+
save_dir = os.path.join(app_dir, "saved_tags")
|
| 379 |
+
|
| 380 |
+
# Ensure the directory exists
|
| 381 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 382 |
+
|
| 383 |
+
# Load metadata
|
| 384 |
+
try:
|
| 385 |
+
with open(metadata_path, 'r') as f:
|
| 386 |
+
metadata = json.load(f)
|
| 387 |
+
except Exception as e:
|
| 388 |
+
return {
|
| 389 |
+
'success': False,
|
| 390 |
+
'error': f"Failed to load metadata: {e}",
|
| 391 |
+
'results': {}
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
# Create ONNX tagger
|
| 395 |
+
try:
|
| 396 |
+
tagger = ONNXImageTagger(model_path, metadata)
|
| 397 |
+
except Exception as e:
|
| 398 |
+
return {
|
| 399 |
+
'success': False,
|
| 400 |
+
'error': f"Failed to load model: {e}",
|
| 401 |
+
'results': {}
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
# Process images in batches
|
| 405 |
+
results = {}
|
| 406 |
+
total_images = len(image_files)
|
| 407 |
+
processed = 0
|
| 408 |
+
|
| 409 |
+
start_time = time.time()
|
| 410 |
+
|
| 411 |
+
# Process in batches
|
| 412 |
+
for i in range(0, total_images, batch_size):
|
| 413 |
+
batch_start = time.time()
|
| 414 |
+
|
| 415 |
+
# Get current batch of images
|
| 416 |
+
batch_files = image_files[i:i+batch_size]
|
| 417 |
+
batch_size_actual = len(batch_files)
|
| 418 |
+
|
| 419 |
+
# Update progress if callback provided
|
| 420 |
+
if progress_callback:
|
| 421 |
+
progress_callback(processed, total_images, batch_files[0] if batch_files else None)
|
| 422 |
+
|
| 423 |
+
print(f"Processing batch {i//batch_size + 1}/{(total_images + batch_size - 1)//batch_size}: {batch_size_actual} images")
|
| 424 |
+
|
| 425 |
+
try:
|
| 426 |
+
# Preprocess images in parallel
|
| 427 |
+
processed_images, valid_paths = preprocess_images_parallel(batch_files)
|
| 428 |
+
|
| 429 |
+
if processed_images:
|
| 430 |
+
# Run batch prediction
|
| 431 |
+
batch_results = tagger.predict_batch(
|
| 432 |
+
processed_images,
|
| 433 |
+
threshold=active_threshold,
|
| 434 |
+
category_thresholds=active_category_thresholds,
|
| 435 |
+
min_confidence=min_confidence
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# Process results for each image
|
| 439 |
+
for j, (image_path, result) in enumerate(zip(valid_paths, batch_results)):
|
| 440 |
+
# Update progress if callback provided
|
| 441 |
+
if progress_callback:
|
| 442 |
+
progress_callback(processed + j, total_images, image_path)
|
| 443 |
+
|
| 444 |
+
# Apply category limits if specified
|
| 445 |
+
if category_limits and result['success']:
|
| 446 |
+
print(f"Applying limits to {os.path.basename(image_path)}: {len(result['all_tags'])} → ", end="")
|
| 447 |
+
result = apply_category_limits(result, category_limits)
|
| 448 |
+
print(f"{len(result['all_tags'])} tags")
|
| 449 |
+
|
| 450 |
+
# Save the tags to a file
|
| 451 |
+
if result['success']:
|
| 452 |
+
try:
|
| 453 |
+
output_path = save_tags_to_file(
|
| 454 |
+
image_path=image_path,
|
| 455 |
+
all_tags=result['all_tags'],
|
| 456 |
+
custom_dir=save_dir,
|
| 457 |
+
overwrite=True
|
| 458 |
+
)
|
| 459 |
+
result['output_path'] = str(output_path)
|
| 460 |
+
except Exception as e:
|
| 461 |
+
print(f"Error saving tags for {image_path}: {e}")
|
| 462 |
+
result['save_error'] = str(e)
|
| 463 |
+
|
| 464 |
+
# Store the result
|
| 465 |
+
results[image_path] = result
|
| 466 |
+
|
| 467 |
+
processed += batch_size_actual
|
| 468 |
+
|
| 469 |
+
# Calculate batch timing
|
| 470 |
+
batch_end = time.time()
|
| 471 |
+
batch_time = batch_end - batch_start
|
| 472 |
+
print(f"Batch processed in {batch_time:.2f} seconds ({batch_time/batch_size_actual:.2f} seconds per image)")
|
| 473 |
+
|
| 474 |
+
except Exception as e:
|
| 475 |
+
print(f"Error processing batch: {str(e)}")
|
| 476 |
+
traceback.print_exc()
|
| 477 |
+
|
| 478 |
+
# Process failed images one by one as fallback
|
| 479 |
+
for j, image_path in enumerate(batch_files):
|
| 480 |
+
try:
|
| 481 |
+
# Update progress if callback provided
|
| 482 |
+
if progress_callback:
|
| 483 |
+
progress_callback(processed + j, total_images, image_path)
|
| 484 |
+
|
| 485 |
+
# Preprocess single image
|
| 486 |
+
img_array = preprocess_image(image_path)
|
| 487 |
+
|
| 488 |
+
# Run inference on single image
|
| 489 |
+
single_results = tagger.predict_batch(
|
| 490 |
+
[img_array],
|
| 491 |
+
threshold=active_threshold,
|
| 492 |
+
category_thresholds=active_category_thresholds,
|
| 493 |
+
min_confidence=min_confidence
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
if single_results:
|
| 497 |
+
result = single_results[0]
|
| 498 |
+
|
| 499 |
+
# Apply category limits if specified
|
| 500 |
+
if category_limits and result['success']:
|
| 501 |
+
result = apply_category_limits(result, category_limits)
|
| 502 |
+
|
| 503 |
+
# Save the tags to a file
|
| 504 |
+
if result['success']:
|
| 505 |
+
try:
|
| 506 |
+
output_path = save_tags_to_file(
|
| 507 |
+
image_path=image_path,
|
| 508 |
+
all_tags=result['all_tags'],
|
| 509 |
+
custom_dir=save_dir,
|
| 510 |
+
overwrite=True
|
| 511 |
+
)
|
| 512 |
+
result['output_path'] = str(output_path)
|
| 513 |
+
except Exception as e:
|
| 514 |
+
print(f"Error saving tags for {image_path}: {e}")
|
| 515 |
+
result['save_error'] = str(e)
|
| 516 |
+
|
| 517 |
+
results[image_path] = result
|
| 518 |
+
else:
|
| 519 |
+
results[image_path] = {
|
| 520 |
+
'success': False,
|
| 521 |
+
'error': 'Failed to process image',
|
| 522 |
+
'all_tags': []
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
except Exception as img_e:
|
| 526 |
+
print(f"Error processing single image {image_path}: {str(img_e)}")
|
| 527 |
+
results[image_path] = {
|
| 528 |
+
'success': False,
|
| 529 |
+
'error': str(img_e),
|
| 530 |
+
'all_tags': []
|
| 531 |
+
}
|
| 532 |
+
|
| 533 |
+
processed += batch_size_actual
|
| 534 |
+
|
| 535 |
+
# Final progress update
|
| 536 |
+
if progress_callback:
|
| 537 |
+
progress_callback(total_images, total_images, None)
|
| 538 |
+
|
| 539 |
+
end_time = time.time()
|
| 540 |
+
total_time = end_time - start_time
|
| 541 |
+
print(f"Batch processing finished. Total time: {total_time:.2f} seconds, Average: {total_time/total_images:.2f} seconds per image")
|
| 542 |
+
|
| 543 |
+
return {
|
| 544 |
+
'success': True,
|
| 545 |
+
'total': total_images,
|
| 546 |
+
'processed': len(results),
|
| 547 |
+
'results': results,
|
| 548 |
+
'save_dir': save_dir,
|
| 549 |
+
'time_elapsed': end_time - start_time
|
| 550 |
+
}
|
| 551 |
+
|
| 552 |
+
def test_onnx_imagetagger(model_path, metadata_path, image_path, threshold=0.5, top_k=256):
|
| 553 |
+
"""
|
| 554 |
+
Test ImageTagger ONNX model with proper handling of all outputs and new metadata format
|
| 555 |
+
|
| 556 |
+
Args:
|
| 557 |
+
model_path: Path to ONNX model file
|
| 558 |
+
metadata_path: Path to metadata JSON file
|
| 559 |
+
image_path: Path to test image
|
| 560 |
+
threshold: Confidence threshold for predictions
|
| 561 |
+
top_k: Maximum number of predictions to show
|
| 562 |
+
"""
|
| 563 |
+
import onnxruntime as ort
|
| 564 |
+
import numpy as np
|
| 565 |
+
import json
|
| 566 |
+
import time
|
| 567 |
+
from collections import defaultdict
|
| 568 |
+
|
| 569 |
+
print(f"Loading ImageTagger ONNX model from {model_path}")
|
| 570 |
+
|
| 571 |
+
# Load metadata with proper error handling
|
| 572 |
+
try:
|
| 573 |
+
with open(metadata_path, 'r') as f:
|
| 574 |
+
metadata = json.load(f)
|
| 575 |
+
except Exception as e:
|
| 576 |
+
raise ValueError(f"Failed to load metadata: {e}")
|
| 577 |
+
|
| 578 |
+
# Extract tag mappings from new metadata structure
|
| 579 |
+
try:
|
| 580 |
+
if 'dataset_info' in metadata:
|
| 581 |
+
# New metadata format
|
| 582 |
+
dataset_info = metadata['dataset_info']
|
| 583 |
+
tag_mapping = dataset_info['tag_mapping']
|
| 584 |
+
idx_to_tag = tag_mapping['idx_to_tag']
|
| 585 |
+
tag_to_category = tag_mapping['tag_to_category']
|
| 586 |
+
total_tags = dataset_info['total_tags']
|
| 587 |
+
else:
|
| 588 |
+
# Fallback for older format
|
| 589 |
+
idx_to_tag = metadata.get('idx_to_tag', {})
|
| 590 |
+
tag_to_category = metadata.get('tag_to_category', {})
|
| 591 |
+
total_tags = metadata.get('total_tags', len(idx_to_tag))
|
| 592 |
+
|
| 593 |
+
print(f"Model info: {total_tags} tags, {len(set(tag_to_category.values()))} categories")
|
| 594 |
+
|
| 595 |
+
except KeyError as e:
|
| 596 |
+
raise ValueError(f"Invalid metadata structure, missing key: {e}")
|
| 597 |
+
|
| 598 |
+
# Initialize ONNX session with robust provider handling
|
| 599 |
+
providers = []
|
| 600 |
+
if ort.get_device() == 'GPU':
|
| 601 |
+
providers.append('CUDAExecutionProvider')
|
| 602 |
+
providers.append('CPUExecutionProvider')
|
| 603 |
+
|
| 604 |
+
try:
|
| 605 |
+
session = ort.InferenceSession(model_path, providers=providers)
|
| 606 |
+
active_provider = session.get_providers()[0]
|
| 607 |
+
print(f"Using provider: {active_provider}")
|
| 608 |
+
|
| 609 |
+
# Print model info
|
| 610 |
+
inputs = session.get_inputs()
|
| 611 |
+
outputs = session.get_outputs()
|
| 612 |
+
print(f"Model inputs: {len(inputs)}")
|
| 613 |
+
print(f"Model outputs: {len(outputs)}")
|
| 614 |
+
for i, output in enumerate(outputs):
|
| 615 |
+
print(f" Output {i}: {output.name} {output.shape}")
|
| 616 |
+
|
| 617 |
+
except Exception as e:
|
| 618 |
+
raise RuntimeError(f"Failed to create ONNX session: {e}")
|
| 619 |
+
|
| 620 |
+
# Preprocess image
|
| 621 |
+
print(f"Processing image: {image_path}")
|
| 622 |
+
try:
|
| 623 |
+
# Get image size from metadata
|
| 624 |
+
img_size = metadata.get('model_info', {}).get('img_size', 512)
|
| 625 |
+
img_tensor = preprocess_image(image_path, image_size=img_size)
|
| 626 |
+
img_numpy = img_tensor[np.newaxis, :] # Add batch dimension
|
| 627 |
+
print(f"Input shape: {img_numpy.shape}, dtype: {img_numpy.dtype}")
|
| 628 |
+
|
| 629 |
+
except Exception as e:
|
| 630 |
+
raise ValueError(f"Image preprocessing failed: {e}")
|
| 631 |
+
|
| 632 |
+
# Run inference
|
| 633 |
+
input_name = session.get_inputs()[0].name
|
| 634 |
+
print("Running inference...")
|
| 635 |
+
|
| 636 |
+
start_time = time.time()
|
| 637 |
+
try:
|
| 638 |
+
outputs = session.run(None, {input_name: img_numpy})
|
| 639 |
+
inference_time = time.time() - start_time
|
| 640 |
+
print(f"Inference completed in {inference_time:.4f} seconds")
|
| 641 |
+
|
| 642 |
+
except Exception as e:
|
| 643 |
+
raise RuntimeError(f"Inference failed: {e}")
|
| 644 |
+
|
| 645 |
+
# Handle outputs properly
|
| 646 |
+
if len(outputs) >= 2:
|
| 647 |
+
initial_logits = outputs[0]
|
| 648 |
+
refined_logits = outputs[1]
|
| 649 |
+
selected_candidates = outputs[2] if len(outputs) > 2 else None
|
| 650 |
+
|
| 651 |
+
# Use refined predictions as main output
|
| 652 |
+
main_logits = refined_logits
|
| 653 |
+
print(f"Using refined predictions (shape: {refined_logits.shape})")
|
| 654 |
+
|
| 655 |
+
else:
|
| 656 |
+
# Fallback to single output
|
| 657 |
+
main_logits = outputs[0]
|
| 658 |
+
print(f"Using single output (shape: {main_logits.shape})")
|
| 659 |
+
|
| 660 |
+
# Apply sigmoid to get probabilities
|
| 661 |
+
main_probs = 1.0 / (1.0 + np.exp(-main_logits))
|
| 662 |
+
|
| 663 |
+
# Apply threshold and get predictions
|
| 664 |
+
predictions_mask = (main_probs >= threshold)
|
| 665 |
+
indices = np.where(predictions_mask[0])[0]
|
| 666 |
+
|
| 667 |
+
if len(indices) == 0:
|
| 668 |
+
print(f"No predictions above threshold {threshold}")
|
| 669 |
+
# Show top 5 regardless of threshold
|
| 670 |
+
top_indices = np.argsort(main_probs[0])[-5:][::-1]
|
| 671 |
+
print("Top 5 predictions:")
|
| 672 |
+
for idx in top_indices:
|
| 673 |
+
idx_str = str(idx)
|
| 674 |
+
tag_name = idx_to_tag.get(idx_str, f"unknown-{idx}")
|
| 675 |
+
prob = float(main_probs[0, idx])
|
| 676 |
+
print(f" {tag_name}: {prob:.3f}")
|
| 677 |
+
return {}
|
| 678 |
+
|
| 679 |
+
# Group by category
|
| 680 |
+
tags_by_category = defaultdict(list)
|
| 681 |
+
|
| 682 |
+
for idx in indices:
|
| 683 |
+
idx_str = str(idx)
|
| 684 |
+
tag_name = idx_to_tag.get(idx_str, f"unknown-{idx}")
|
| 685 |
+
category = tag_to_category.get(tag_name, "general")
|
| 686 |
+
prob = float(main_probs[0, idx])
|
| 687 |
+
|
| 688 |
+
tags_by_category[category].append((tag_name, prob))
|
| 689 |
+
|
| 690 |
+
# Sort by probability within each category
|
| 691 |
+
for category in tags_by_category:
|
| 692 |
+
tags_by_category[category] = sorted(
|
| 693 |
+
tags_by_category[category],
|
| 694 |
+
key=lambda x: x[1],
|
| 695 |
+
reverse=True
|
| 696 |
+
)[:top_k] # Limit per category
|
| 697 |
+
|
| 698 |
+
# Print results
|
| 699 |
+
total_predictions = sum(len(tags) for tags in tags_by_category.values())
|
| 700 |
+
print(f"\nPredicted tags (threshold: {threshold}): {total_predictions} total")
|
| 701 |
+
|
| 702 |
+
# Category order for consistent display
|
| 703 |
+
category_order = ['general', 'character', 'copyright', 'artist', 'meta', 'year', 'rating']
|
| 704 |
+
|
| 705 |
+
for category in category_order:
|
| 706 |
+
if category in tags_by_category:
|
| 707 |
+
tags = tags_by_category[category]
|
| 708 |
+
print(f"\n{category.upper()} ({len(tags)}):")
|
| 709 |
+
for tag, prob in tags:
|
| 710 |
+
print(f" {tag}: {prob:.3f}")
|
| 711 |
+
|
| 712 |
+
# Show any other categories not in standard order
|
| 713 |
+
for category in sorted(tags_by_category.keys()):
|
| 714 |
+
if category not in category_order:
|
| 715 |
+
tags = tags_by_category[category]
|
| 716 |
+
print(f"\n{category.upper()} ({len(tags)}):")
|
| 717 |
+
for tag, prob in tags:
|
| 718 |
+
print(f" {tag}: {prob:.3f}")
|
| 719 |
+
|
| 720 |
+
# Performance stats
|
| 721 |
+
print(f"\nPerformance:")
|
| 722 |
+
print(f" Inference time: {inference_time:.4f}s")
|
| 723 |
+
print(f" Provider: {active_provider}")
|
| 724 |
+
print(f" Max confidence: {main_probs.max():.3f}")
|
| 725 |
+
if total_predictions > 0:
|
| 726 |
+
avg_conf = np.mean([prob for tags in tags_by_category.values() for _, prob in tags])
|
| 727 |
+
print(f" Average confidence: {avg_conf:.3f}")
|
| 728 |
+
|
| 729 |
+
return dict(tags_by_category)
|
utils/ui_components.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
UI components for the Image Tagger application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def display_progress_bar(prob):
|
| 11 |
+
"""
|
| 12 |
+
Create an HTML progress bar for displaying probability.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
prob: Probability value between 0 and 1
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
HTML string for the progress bar
|
| 19 |
+
"""
|
| 20 |
+
# Convert probability to percentage
|
| 21 |
+
percentage = int(prob * 100)
|
| 22 |
+
|
| 23 |
+
# Choose color based on confidence level
|
| 24 |
+
if prob >= 0.8:
|
| 25 |
+
color = "green"
|
| 26 |
+
elif prob >= 0.5:
|
| 27 |
+
color = "orange"
|
| 28 |
+
else:
|
| 29 |
+
color = "red"
|
| 30 |
+
|
| 31 |
+
# Return HTML for a styled progress bar
|
| 32 |
+
return f"""
|
| 33 |
+
<div style="margin-bottom: 5px; display: flex; align-items: center;">
|
| 34 |
+
<div style="flex-grow: 1; background-color: #f0f0f0; border-radius: 3px; height: 8px; position: relative;">
|
| 35 |
+
<div style="position: absolute; width: {percentage}%; background-color: {color}; height: 8px; border-radius: 3px;"></div>
|
| 36 |
+
</div>
|
| 37 |
+
<div style="margin-left: 8px; min-width: 40px; text-align: right; font-size: 0.9em;">{percentage}%</div>
|
| 38 |
+
</div>
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def show_example_images(examples_dir):
|
| 43 |
+
"""
|
| 44 |
+
Display example images from a directory.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
examples_dir: Directory containing example images
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
Selected image path or None
|
| 51 |
+
"""
|
| 52 |
+
selected_image = None
|
| 53 |
+
|
| 54 |
+
if os.path.exists(examples_dir):
|
| 55 |
+
example_files = [f for f in os.listdir(examples_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
| 56 |
+
|
| 57 |
+
if example_files:
|
| 58 |
+
st.write("Select an example image:")
|
| 59 |
+
|
| 60 |
+
# Create a 2-column layout for examples
|
| 61 |
+
example_cols = st.columns(2)
|
| 62 |
+
|
| 63 |
+
for i, example_file in enumerate(example_files):
|
| 64 |
+
col_idx = i % 2
|
| 65 |
+
with example_cols[col_idx]:
|
| 66 |
+
example_path = os.path.join(examples_dir, example_file)
|
| 67 |
+
|
| 68 |
+
# Display thumbnail
|
| 69 |
+
try:
|
| 70 |
+
img = Image.open(example_path)
|
| 71 |
+
st.image(img, width=150, caption=example_file)
|
| 72 |
+
|
| 73 |
+
# Button to select this example
|
| 74 |
+
if st.button(f"Use", key=f"example_{i}"):
|
| 75 |
+
selected_image = example_path
|
| 76 |
+
st.session_state.original_filename = example_file
|
| 77 |
+
|
| 78 |
+
# Display full image
|
| 79 |
+
st.image(img, use_container_width=True)
|
| 80 |
+
st.success(f"Example '{example_file}' selected!")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
st.error(f"Error loading {example_file}: {str(e)}")
|
| 83 |
+
else:
|
| 84 |
+
st.info("No example images found.")
|
| 85 |
+
st.write("Add some JPG or PNG images to the 'examples' directory.")
|
| 86 |
+
else:
|
| 87 |
+
st.info("Examples directory not found.")
|
| 88 |
+
st.write("Create an 'examples' directory and add some JPG or PNG images.")
|
| 89 |
+
|
| 90 |
+
return selected_image
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def display_batch_results(batch_results):
|
| 94 |
+
"""
|
| 95 |
+
Display batch processing results.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
batch_results: Dictionary with batch processing results
|
| 99 |
+
"""
|
| 100 |
+
if batch_results['success']:
|
| 101 |
+
st.success(f"✅ Processed {batch_results['processed']} of {batch_results['total']} images")
|
| 102 |
+
|
| 103 |
+
# Show details in an expander
|
| 104 |
+
with st.expander("Batch Processing Results", expanded=True):
|
| 105 |
+
# Count successes and failures
|
| 106 |
+
successes = sum(1 for r in batch_results['results'].values() if r['success'])
|
| 107 |
+
failures = batch_results['total'] - successes
|
| 108 |
+
|
| 109 |
+
st.write(f"- Successfully tagged: {successes}")
|
| 110 |
+
st.write(f"- Failed to process: {failures}")
|
| 111 |
+
|
| 112 |
+
if failures > 0:
|
| 113 |
+
# Show errors
|
| 114 |
+
st.write("### Processing Errors")
|
| 115 |
+
for img_path, result in batch_results['results'].items():
|
| 116 |
+
if not result['success']:
|
| 117 |
+
st.write(f"- **{os.path.basename(img_path)}**: {result.get('error', 'Unknown error')}")
|
| 118 |
+
|
| 119 |
+
# Show the location of the output files
|
| 120 |
+
if successes > 0:
|
| 121 |
+
st.write("### Output Files")
|
| 122 |
+
st.write(f"Tag files have been saved to the 'saved_tags' folder.")
|
| 123 |
+
|
| 124 |
+
# Show the first few as examples
|
| 125 |
+
st.write("Example outputs:")
|
| 126 |
+
sample_results = [(path, res) for path, res in batch_results['results'].items() if res['success']][:3]
|
| 127 |
+
for img_path, result in sample_results:
|
| 128 |
+
output_path = result.get('output_path', '')
|
| 129 |
+
if output_path and os.path.exists(output_path):
|
| 130 |
+
st.write(f"- **{os.path.basename(output_path)}**")
|
| 131 |
+
|
| 132 |
+
# Show file contents in a collapsible code block
|
| 133 |
+
with open(output_path, 'r', encoding='utf-8') as f:
|
| 134 |
+
content = f.read()
|
| 135 |
+
st.code(content, language='text')
|
| 136 |
+
else:
|
| 137 |
+
st.error(f"Batch processing failed: {batch_results.get('error', 'Unknown error')}")
|