|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/wangyuxin87/VisionLAN |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
|
|
|
|
class VLLoss(nn.Layer): |
|
def __init__(self, mode='LF_1', weight_res=0.5, weight_mas=0.5, **kwargs): |
|
super(VLLoss, self).__init__() |
|
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean") |
|
assert mode in ['LF_1', 'LF_2', 'LA'] |
|
self.mode = mode |
|
self.weight_res = weight_res |
|
self.weight_mas = weight_mas |
|
|
|
def flatten_label(self, target): |
|
label_flatten = [] |
|
label_length = [] |
|
for i in range(0, target.shape[0]): |
|
cur_label = target[i].tolist() |
|
label_flatten += cur_label[:cur_label.index(0) + 1] |
|
label_length.append(cur_label.index(0) + 1) |
|
label_flatten = paddle.to_tensor(label_flatten, dtype='int64') |
|
label_length = paddle.to_tensor(label_length, dtype='int32') |
|
return (label_flatten, label_length) |
|
|
|
def _flatten(self, sources, lengths): |
|
return paddle.concat([t[:l] for t, l in zip(sources, lengths)]) |
|
|
|
def forward(self, predicts, batch): |
|
text_pre = predicts[0] |
|
target = batch[1].astype('int64') |
|
label_flatten, length = self.flatten_label(target) |
|
text_pre = self._flatten(text_pre, length) |
|
if self.mode == 'LF_1': |
|
loss = self.loss_func(text_pre, label_flatten) |
|
else: |
|
text_rem = predicts[1] |
|
text_mas = predicts[2] |
|
target_res = batch[2].astype('int64') |
|
target_sub = batch[3].astype('int64') |
|
label_flatten_res, length_res = self.flatten_label(target_res) |
|
label_flatten_sub, length_sub = self.flatten_label(target_sub) |
|
text_rem = self._flatten(text_rem, length_res) |
|
text_mas = self._flatten(text_mas, length_sub) |
|
loss_ori = self.loss_func(text_pre, label_flatten) |
|
loss_res = self.loss_func(text_rem, label_flatten_res) |
|
loss_mas = self.loss_func(text_mas, label_flatten_sub) |
|
loss = loss_ori + loss_res * self.weight_res + loss_mas * self.weight_mas |
|
return {'loss': loss} |
|
|