Danieldu
add code
a89d9fd
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/transforms.py
"""
import numpy as np
from PIL import Image, ImageDraw
import cv2
from shapely.geometry import Polygon
import math
from ppocr.utils.poly_nms import poly_intersection
class RandomScaling:
def __init__(self, size=800, scale=(3. / 4, 5. / 2), **kwargs):
"""Random scale the image while keeping aspect.
Args:
size (int) : Base size before scaling.
scale (tuple(float)) : The range of scaling.
"""
assert isinstance(size, int)
assert isinstance(scale, float) or isinstance(scale, tuple)
self.size = size
self.scale = scale if isinstance(scale, tuple) \
else (1 - scale, 1 + scale)
def __call__(self, data):
image = data['image']
text_polys = data['polys']
h, w, _ = image.shape
aspect_ratio = np.random.uniform(min(self.scale), max(self.scale))
scales = self.size * 1.0 / max(h, w) * aspect_ratio
scales = np.array([scales, scales])
out_size = (int(h * scales[1]), int(w * scales[0]))
image = cv2.resize(image, out_size[::-1])
data['image'] = image
text_polys[:, :, 0::2] = text_polys[:, :, 0::2] * scales[1]
text_polys[:, :, 1::2] = text_polys[:, :, 1::2] * scales[0]
data['polys'] = text_polys
return data
class RandomCropFlip:
def __init__(self,
pad_ratio=0.1,
crop_ratio=0.5,
iter_num=1,
min_area_ratio=0.2,
**kwargs):
"""Random crop and flip a patch of the image.
Args:
crop_ratio (float): The ratio of cropping.
iter_num (int): Number of operations.
min_area_ratio (float): Minimal area ratio between cropped patch
and original image.
"""
assert isinstance(crop_ratio, float)
assert isinstance(iter_num, int)
assert isinstance(min_area_ratio, float)
self.pad_ratio = pad_ratio
self.epsilon = 1e-2
self.crop_ratio = crop_ratio
self.iter_num = iter_num
self.min_area_ratio = min_area_ratio
def __call__(self, results):
for i in range(self.iter_num):
results = self.random_crop_flip(results)
return results
def random_crop_flip(self, results):
image = results['image']
polygons = results['polys']
ignore_tags = results['ignore_tags']
if len(polygons) == 0:
return results
if np.random.random() >= self.crop_ratio:
return results
h, w, _ = image.shape
area = h * w
pad_h = int(h * self.pad_ratio)
pad_w = int(w * self.pad_ratio)
h_axis, w_axis = self.generate_crop_target(image, polygons, pad_h,
pad_w)
if len(h_axis) == 0 or len(w_axis) == 0:
return results
attempt = 0
while attempt < 50:
attempt += 1
polys_keep = []
polys_new = []
ignore_tags_keep = []
ignore_tags_new = []
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
# area too small
continue
pts = np.stack([[xmin, xmax, xmax, xmin],
[ymin, ymin, ymax, ymax]]).T.astype(np.int32)
pp = Polygon(pts)
fail_flag = False
for polygon, ignore_tag in zip(polygons, ignore_tags):
ppi = Polygon(polygon.reshape(-1, 2))
ppiou, _ = poly_intersection(ppi, pp, buffer=0)
if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
np.abs(ppiou) > self.epsilon:
fail_flag = True
break
elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
polys_new.append(polygon)
ignore_tags_new.append(ignore_tag)
else:
polys_keep.append(polygon)
ignore_tags_keep.append(ignore_tag)
if fail_flag:
continue
else:
break
cropped = image[ymin:ymax, xmin:xmax, :]
select_type = np.random.randint(3)
if select_type == 0:
img = np.ascontiguousarray(cropped[:, ::-1])
elif select_type == 1:
img = np.ascontiguousarray(cropped[::-1, :])
else:
img = np.ascontiguousarray(cropped[::-1, ::-1])
image[ymin:ymax, xmin:xmax, :] = img
results['img'] = image
if len(polys_new) != 0:
height, width, _ = cropped.shape
if select_type == 0:
for idx, polygon in enumerate(polys_new):
poly = polygon.reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
polys_new[idx] = poly
elif select_type == 1:
for idx, polygon in enumerate(polys_new):
poly = polygon.reshape(-1, 2)
poly[:, 1] = height - poly[:, 1] + 2 * ymin
polys_new[idx] = poly
else:
for idx, polygon in enumerate(polys_new):
poly = polygon.reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
poly[:, 1] = height - poly[:, 1] + 2 * ymin
polys_new[idx] = poly
polygons = polys_keep + polys_new
ignore_tags = ignore_tags_keep + ignore_tags_new
results['polys'] = np.array(polygons)
results['ignore_tags'] = ignore_tags
return results
def generate_crop_target(self, image, all_polys, pad_h, pad_w):
"""Generate crop target and make sure not to crop the polygon
instances.
Args:
image (ndarray): The image waited to be crop.
all_polys (list[list[ndarray]]): All polygons including ground
truth polygons and ground truth ignored polygons.
pad_h (int): Padding length of height.
pad_w (int): Padding length of width.
Returns:
h_axis (ndarray): Vertical cropping range.
w_axis (ndarray): Horizontal cropping range.
"""
h, w, _ = image.shape
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
text_polys = []
for polygon in all_polys:
rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
box = cv2.boxPoints(rect)
box = np.int0(box)
text_polys.append([box[0], box[1], box[2], box[3]])
polys = np.array(text_polys, dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w:maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h:maxy + pad_h] = 1
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
return h_axis, w_axis
class RandomCropPolyInstances:
"""Randomly crop images and make sure to contain at least one intact
instance."""
def __init__(self, crop_ratio=5.0 / 8.0, min_side_ratio=0.4, **kwargs):
super().__init__()
self.crop_ratio = crop_ratio
self.min_side_ratio = min_side_ratio
def sample_valid_start_end(self, valid_array, min_len, max_start, min_end):
assert isinstance(min_len, int)
assert len(valid_array) > min_len
start_array = valid_array.copy()
max_start = min(len(start_array) - min_len, max_start)
start_array[max_start:] = 0
start_array[0] = 1
diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
region_starts = np.where(diff_array < 0)[0]
region_ends = np.where(diff_array > 0)[0]
region_ind = np.random.randint(0, len(region_starts))
start = np.random.randint(region_starts[region_ind],
region_ends[region_ind])
end_array = valid_array.copy()
min_end = max(start + min_len, min_end)
end_array[:min_end] = 0
end_array[-1] = 1
diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
region_starts = np.where(diff_array < 0)[0]
region_ends = np.where(diff_array > 0)[0]
region_ind = np.random.randint(0, len(region_starts))
end = np.random.randint(region_starts[region_ind],
region_ends[region_ind])
return start, end
def sample_crop_box(self, img_size, results):
"""Generate crop box and make sure not to crop the polygon instances.
Args:
img_size (tuple(int)): The image size (h, w).
results (dict): The results dict.
"""
assert isinstance(img_size, tuple)
h, w = img_size[:2]
key_masks = results['polys']
x_valid_array = np.ones(w, dtype=np.int32)
y_valid_array = np.ones(h, dtype=np.int32)
selected_mask = key_masks[np.random.randint(0, len(key_masks))]
selected_mask = selected_mask.reshape((-1, 2)).astype(np.int32)
max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)
for mask in key_masks:
mask = mask.reshape((-1, 2)).astype(np.int32)
clip_x = np.clip(mask[:, 0], 0, w - 1)
clip_y = np.clip(mask[:, 1], 0, h - 1)
min_x, max_x = np.min(clip_x), np.max(clip_x)
min_y, max_y = np.min(clip_y), np.max(clip_y)
x_valid_array[min_x - 2:max_x + 3] = 0
y_valid_array[min_y - 2:max_y + 3] = 0
min_w = int(w * self.min_side_ratio)
min_h = int(h * self.min_side_ratio)
x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start,
min_x_end)
y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start,
min_y_end)
return np.array([x1, y1, x2, y2])
def crop_img(self, img, bbox):
assert img.ndim == 3
h, w, _ = img.shape
assert 0 <= bbox[1] < bbox[3] <= h
assert 0 <= bbox[0] < bbox[2] <= w
return img[bbox[1]:bbox[3], bbox[0]:bbox[2]]
def __call__(self, results):
image = results['image']
polygons = results['polys']
ignore_tags = results['ignore_tags']
if len(polygons) < 1:
return results
if np.random.random_sample() < self.crop_ratio:
crop_box = self.sample_crop_box(image.shape, results)
img = self.crop_img(image, crop_box)
results['image'] = img
# crop and filter masks
x1, y1, x2, y2 = crop_box
w = max(x2 - x1, 1)
h = max(y2 - y1, 1)
polygons[:, :, 0::2] = polygons[:, :, 0::2] - x1
polygons[:, :, 1::2] = polygons[:, :, 1::2] - y1
valid_masks_list = []
valid_tags_list = []
for ind, polygon in enumerate(polygons):
if (polygon[:, ::2] > -4).all() and (
polygon[:, ::2] < w + 4).all() and (
polygon[:, 1::2] > -4).all() and (
polygon[:, 1::2] < h + 4).all():
polygon[:, ::2] = np.clip(polygon[:, ::2], 0, w)
polygon[:, 1::2] = np.clip(polygon[:, 1::2], 0, h)
valid_masks_list.append(polygon)
valid_tags_list.append(ignore_tags[ind])
results['polys'] = np.array(valid_masks_list)
results['ignore_tags'] = valid_tags_list
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
class RandomRotatePolyInstances:
def __init__(self,
rotate_ratio=0.5,
max_angle=10,
pad_with_fixed_color=False,
pad_value=(0, 0, 0),
**kwargs):
"""Randomly rotate images and polygon masks.
Args:
rotate_ratio (float): The ratio of samples to operate rotation.
max_angle (int): The maximum rotation angle.
pad_with_fixed_color (bool): The flag for whether to pad rotated
image with fixed value. If set to False, the rotated image will
be padded onto cropped image.
pad_value (tuple(int)): The color value for padding rotated image.
"""
self.rotate_ratio = rotate_ratio
self.max_angle = max_angle
self.pad_with_fixed_color = pad_with_fixed_color
self.pad_value = pad_value
def rotate(self, center, points, theta, center_shift=(0, 0)):
# rotate points.
(center_x, center_y) = center
center_y = -center_y
x, y = points[:, ::2], points[:, 1::2]
y = -y
theta = theta / 180 * math.pi
cos = math.cos(theta)
sin = math.sin(theta)
x = (x - center_x)
y = (y - center_y)
_x = center_x + x * cos - y * sin + center_shift[0]
_y = -(center_y + x * sin + y * cos) + center_shift[1]
points[:, ::2], points[:, 1::2] = _x, _y
return points
def cal_canvas_size(self, ori_size, degree):
assert isinstance(ori_size, tuple)
angle = degree * math.pi / 180.0
h, w = ori_size[:2]
cos = math.cos(angle)
sin = math.sin(angle)
canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))
canvas_size = (canvas_h, canvas_w)
return canvas_size
def sample_angle(self, max_angle):
angle = np.random.random_sample() * 2 * max_angle - max_angle
return angle
def rotate_img(self, img, angle, canvas_size):
h, w = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)
if self.pad_with_fixed_color:
target_img = cv2.warpAffine(
img,
rotation_matrix, (canvas_size[1], canvas_size[0]),
flags=cv2.INTER_NEAREST,
borderValue=self.pad_value)
else:
mask = np.zeros_like(img)
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
np.random.randint(0, w * 7 // 8))
img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
img_cut = cv2.resize(img_cut, (canvas_size[1], canvas_size[0]))
mask = cv2.warpAffine(
mask,
rotation_matrix, (canvas_size[1], canvas_size[0]),
borderValue=[1, 1, 1])
target_img = cv2.warpAffine(
img,
rotation_matrix, (canvas_size[1], canvas_size[0]),
borderValue=[0, 0, 0])
target_img = target_img + img_cut * mask
return target_img
def __call__(self, results):
if np.random.random_sample() < self.rotate_ratio:
image = results['image']
polygons = results['polys']
h, w = image.shape[:2]
angle = self.sample_angle(self.max_angle)
canvas_size = self.cal_canvas_size((h, w), angle)
center_shift = (int((canvas_size[1] - w) / 2), int(
(canvas_size[0] - h) / 2))
image = self.rotate_img(image, angle, canvas_size)
results['image'] = image
# rotate polygons
rotated_masks = []
for mask in polygons:
rotated_mask = self.rotate((w / 2, h / 2), mask, angle,
center_shift)
rotated_masks.append(rotated_mask)
results['polys'] = np.array(rotated_masks)
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
class SquareResizePad:
def __init__(self,
target_size,
pad_ratio=0.6,
pad_with_fixed_color=False,
pad_value=(0, 0, 0),
**kwargs):
"""Resize or pad images to be square shape.
Args:
target_size (int): The target size of square shaped image.
pad_with_fixed_color (bool): The flag for whether to pad rotated
image with fixed value. If set to False, the rescales image will
be padded onto cropped image.
pad_value (tuple(int)): The color value for padding rotated image.
"""
assert isinstance(target_size, int)
assert isinstance(pad_ratio, float)
assert isinstance(pad_with_fixed_color, bool)
assert isinstance(pad_value, tuple)
self.target_size = target_size
self.pad_ratio = pad_ratio
self.pad_with_fixed_color = pad_with_fixed_color
self.pad_value = pad_value
def resize_img(self, img, keep_ratio=True):
h, w, _ = img.shape
if keep_ratio:
t_h = self.target_size if h >= w else int(h * self.target_size / w)
t_w = self.target_size if h <= w else int(w * self.target_size / h)
else:
t_h = t_w = self.target_size
img = cv2.resize(img, (t_w, t_h))
return img, (t_h, t_w)
def square_pad(self, img):
h, w = img.shape[:2]
if h == w:
return img, (0, 0)
pad_size = max(h, w)
if self.pad_with_fixed_color:
expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8)
expand_img[:] = self.pad_value
else:
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
np.random.randint(0, w * 7 // 8))
img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
expand_img = cv2.resize(img_cut, (pad_size, pad_size))
if h > w:
y0, x0 = 0, (h - w) // 2
else:
y0, x0 = (w - h) // 2, 0
expand_img[y0:y0 + h, x0:x0 + w] = img
offset = (x0, y0)
return expand_img, offset
def square_pad_mask(self, points, offset):
x0, y0 = offset
pad_points = points.copy()
pad_points[::2] = pad_points[::2] + x0
pad_points[1::2] = pad_points[1::2] + y0
return pad_points
def __call__(self, results):
image = results['image']
polygons = results['polys']
h, w = image.shape[:2]
if np.random.random_sample() < self.pad_ratio:
image, out_size = self.resize_img(image, keep_ratio=True)
image, offset = self.square_pad(image)
else:
image, out_size = self.resize_img(image, keep_ratio=False)
offset = (0, 0)
results['image'] = image
try:
polygons[:, :, 0::2] = polygons[:, :, 0::2] * out_size[
1] / w + offset[0]
polygons[:, :, 1::2] = polygons[:, :, 1::2] * out_size[
0] / h + offset[1]
except:
pass
results['polys'] = polygons
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str