|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import subprocess |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
import cv2 |
|
import json |
|
import numpy as np |
|
import time |
|
import logging |
|
from copy import deepcopy |
|
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.visual import draw_ser_results, draw_re_results |
|
from tools.infer.predict_system import TextSystem |
|
from ppstructure.layout.predict_layout import LayoutPredictor |
|
from ppstructure.table.predict_table import TableSystem, to_excel |
|
from ppstructure.utility import parse_args, draw_structure_result |
|
|
|
logger = get_logger() |
|
|
|
|
|
class StructureSystem(object): |
|
def __init__(self, args): |
|
self.mode = args.mode |
|
self.recovery = args.recovery |
|
|
|
self.image_orientation_predictor = None |
|
if args.image_orientation: |
|
import paddleclas |
|
self.image_orientation_predictor = paddleclas.PaddleClas( |
|
model_name="text_image_orientation") |
|
|
|
if self.mode == 'structure': |
|
if not args.show_log: |
|
logger.setLevel(logging.INFO) |
|
if args.layout == False and args.ocr == True: |
|
args.ocr = False |
|
logger.warning( |
|
"When args.layout is false, args.ocr is automatically set to false" |
|
) |
|
args.drop_score = 0 |
|
|
|
self.layout_predictor = None |
|
self.text_system = None |
|
self.table_system = None |
|
if args.layout: |
|
self.layout_predictor = LayoutPredictor(args) |
|
if args.ocr: |
|
self.text_system = TextSystem(args) |
|
if args.table: |
|
if self.text_system is not None: |
|
self.table_system = TableSystem( |
|
args, self.text_system.text_detector, |
|
self.text_system.text_recognizer) |
|
else: |
|
self.table_system = TableSystem(args) |
|
|
|
elif self.mode == 'kie': |
|
from ppstructure.kie.predict_kie_token_ser_re import SerRePredictor |
|
self.kie_predictor = SerRePredictor(args) |
|
|
|
def __call__(self, img, return_ocr_result_in_table=False, img_idx=0): |
|
time_dict = { |
|
'image_orientation': 0, |
|
'layout': 0, |
|
'table': 0, |
|
'table_match': 0, |
|
'det': 0, |
|
'rec': 0, |
|
'kie': 0, |
|
'all': 0 |
|
} |
|
start = time.time() |
|
if self.image_orientation_predictor is not None: |
|
tic = time.time() |
|
cls_result = self.image_orientation_predictor.predict( |
|
input_data=img) |
|
cls_res = next(cls_result) |
|
angle = cls_res[0]['label_names'][0] |
|
cv_rotate_code = { |
|
'90': cv2.ROTATE_90_COUNTERCLOCKWISE, |
|
'180': cv2.ROTATE_180, |
|
'270': cv2.ROTATE_90_CLOCKWISE |
|
} |
|
if angle in cv_rotate_code: |
|
img = cv2.rotate(img, cv_rotate_code[angle]) |
|
toc = time.time() |
|
time_dict['image_orientation'] = toc - tic |
|
if self.mode == 'structure': |
|
ori_im = img.copy() |
|
if self.layout_predictor is not None: |
|
layout_res, elapse = self.layout_predictor(img) |
|
time_dict['layout'] += elapse |
|
else: |
|
h, w = ori_im.shape[:2] |
|
layout_res = [dict(bbox=None, label='table')] |
|
res_list = [] |
|
for region in layout_res: |
|
res = '' |
|
if region['bbox'] is not None: |
|
x1, y1, x2, y2 = region['bbox'] |
|
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) |
|
roi_img = ori_im[y1:y2, x1:x2, :] |
|
else: |
|
x1, y1, x2, y2 = 0, 0, w, h |
|
roi_img = ori_im |
|
if region['label'] == 'table': |
|
if self.table_system is not None: |
|
res, table_time_dict = self.table_system( |
|
roi_img, return_ocr_result_in_table) |
|
time_dict['table'] += table_time_dict['table'] |
|
time_dict['table_match'] += table_time_dict['match'] |
|
time_dict['det'] += table_time_dict['det'] |
|
time_dict['rec'] += table_time_dict['rec'] |
|
else: |
|
if self.text_system is not None: |
|
if self.recovery: |
|
wht_im = np.ones(ori_im.shape, dtype=ori_im.dtype) |
|
wht_im[y1:y2, x1:x2, :] = roi_img |
|
filter_boxes, filter_rec_res, ocr_time_dict = self.text_system( |
|
wht_im) |
|
else: |
|
filter_boxes, filter_rec_res, ocr_time_dict = self.text_system( |
|
roi_img) |
|
time_dict['det'] += ocr_time_dict['det'] |
|
time_dict['rec'] += ocr_time_dict['rec'] |
|
|
|
|
|
|
|
|
|
style_token = [ |
|
'<strike>', '<strike>', '<sup>', '</sub>', '<b>', |
|
'</b>', '<sub>', '</sup>', '<overline>', |
|
'</overline>', '<underline>', '</underline>', '<i>', |
|
'</i>' |
|
] |
|
res = [] |
|
for box, rec_res in zip(filter_boxes, filter_rec_res): |
|
rec_str, rec_conf = rec_res |
|
for token in style_token: |
|
if token in rec_str: |
|
rec_str = rec_str.replace(token, '') |
|
if not self.recovery: |
|
box += [x1, y1] |
|
res.append({ |
|
'text': rec_str, |
|
'confidence': float(rec_conf), |
|
'text_region': box.tolist() |
|
}) |
|
res_list.append({ |
|
'type': region['label'].lower(), |
|
'bbox': [x1, y1, x2, y2], |
|
'img': roi_img, |
|
'res': res, |
|
'img_idx': img_idx |
|
}) |
|
end = time.time() |
|
time_dict['all'] = end - start |
|
return res_list, time_dict |
|
elif self.mode == 'kie': |
|
re_res, elapse = self.kie_predictor(img) |
|
time_dict['kie'] = elapse |
|
time_dict['all'] = elapse |
|
return re_res[0], time_dict |
|
return None, None |
|
|
|
|
|
def save_structure_res(res, save_folder, img_name, img_idx=0): |
|
excel_save_folder = os.path.join(save_folder, img_name) |
|
os.makedirs(excel_save_folder, exist_ok=True) |
|
res_cp = deepcopy(res) |
|
|
|
with open( |
|
os.path.join(excel_save_folder, 'res_{}.txt'.format(img_idx)), |
|
'w', |
|
encoding='utf8') as f: |
|
for region in res_cp: |
|
roi_img = region.pop('img') |
|
f.write('{}\n'.format(json.dumps(region))) |
|
|
|
if region['type'].lower() == 'table' and len(region[ |
|
'res']) > 0 and 'html' in region['res']: |
|
excel_path = os.path.join( |
|
excel_save_folder, |
|
'{}_{}.xlsx'.format(region['bbox'], img_idx)) |
|
to_excel(region['res']['html'], excel_path) |
|
elif region['type'].lower() == 'figure': |
|
img_path = os.path.join( |
|
excel_save_folder, |
|
'{}_{}.jpg'.format(region['bbox'], img_idx)) |
|
cv2.imwrite(img_path, roi_img) |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
image_file_list = image_file_list |
|
image_file_list = image_file_list[args.process_id::args.total_process_num] |
|
|
|
if not args.use_pdf2docx_api: |
|
structure_sys = StructureSystem(args) |
|
save_folder = os.path.join(args.output, structure_sys.mode) |
|
os.makedirs(save_folder, exist_ok=True) |
|
img_num = len(image_file_list) |
|
|
|
for i, image_file in enumerate(image_file_list): |
|
logger.info("[{}/{}] {}".format(i, img_num, image_file)) |
|
img, flag_gif, flag_pdf = check_and_read(image_file) |
|
img_name = os.path.basename(image_file).split('.')[0] |
|
|
|
if args.recovery and args.use_pdf2docx_api and flag_pdf: |
|
from pdf2docx.converter import Converter |
|
os.makedirs(args.output, exist_ok=True) |
|
docx_file = os.path.join(args.output, |
|
'{}_api.docx'.format(img_name)) |
|
cv = Converter(image_file) |
|
cv.convert(docx_file) |
|
cv.close() |
|
logger.info('docx save to {}'.format(docx_file)) |
|
continue |
|
|
|
if not flag_gif and not flag_pdf: |
|
img = cv2.imread(image_file) |
|
|
|
if not flag_pdf: |
|
if img is None: |
|
logger.error("error in loading image:{}".format(image_file)) |
|
continue |
|
imgs = [img] |
|
else: |
|
imgs = img |
|
|
|
all_res = [] |
|
for index, img in enumerate(imgs): |
|
res, time_dict = structure_sys(img, img_idx=index) |
|
img_save_path = os.path.join(save_folder, img_name, |
|
'show_{}.jpg'.format(index)) |
|
os.makedirs(os.path.join(save_folder, img_name), exist_ok=True) |
|
if structure_sys.mode == 'structure' and res != []: |
|
draw_img = draw_structure_result(img, res, args.vis_font_path) |
|
save_structure_res(res, save_folder, img_name, index) |
|
elif structure_sys.mode == 'kie': |
|
if structure_sys.kie_predictor.predictor is not None: |
|
draw_img = draw_re_results( |
|
img, res, font_path=args.vis_font_path) |
|
else: |
|
draw_img = draw_ser_results( |
|
img, res, font_path=args.vis_font_path) |
|
|
|
with open( |
|
os.path.join(save_folder, img_name, |
|
'res_{}_kie.txt'.format(index)), |
|
'w', |
|
encoding='utf8') as f: |
|
res_str = '{}\t{}\n'.format( |
|
image_file, |
|
json.dumps( |
|
{ |
|
"ocr_info": res |
|
}, ensure_ascii=False)) |
|
f.write(res_str) |
|
if res != []: |
|
cv2.imwrite(img_save_path, draw_img) |
|
logger.info('result save to {}'.format(img_save_path)) |
|
if args.recovery and res != []: |
|
from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx |
|
h, w, _ = img.shape |
|
res = sorted_layout_boxes(res, w) |
|
all_res += res |
|
|
|
if args.recovery and all_res != []: |
|
try: |
|
convert_info_docx(img, all_res, save_folder, img_name) |
|
except Exception as ex: |
|
logger.error("error in layout recovery image:{}, err msg: {}". |
|
format(image_file, ex)) |
|
continue |
|
logger.info("Predict time : {:.3f}s".format(time_dict['all'])) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
if args.use_mp: |
|
p_list = [] |
|
total_process_num = args.total_process_num |
|
for process_id in range(total_process_num): |
|
cmd = [sys.executable, "-u"] + sys.argv + [ |
|
"--process_id={}".format(process_id), |
|
"--use_mp={}".format(False) |
|
] |
|
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) |
|
p_list.append(p) |
|
for p in p_list: |
|
p.wait() |
|
else: |
|
main(args) |
|
|