|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import paddle.nn.functional as F |
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import paddle |
|
|
|
from ppocr.data import create_operators, transform |
|
from ppocr.modeling.architectures import build_model |
|
from ppocr.utils.save_load import load_model |
|
import tools.program as program |
|
import time |
|
|
|
|
|
def read_class_list(filepath): |
|
ret = {} |
|
with open(filepath, "r") as f: |
|
lines = f.readlines() |
|
for idx, line in enumerate(lines): |
|
ret[idx] = line.strip("\n") |
|
return ret |
|
|
|
|
|
def draw_kie_result(batch, node, idx_to_cls, count): |
|
img = batch[6].copy() |
|
boxes = batch[7] |
|
h, w = img.shape[:2] |
|
pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255 |
|
max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1) |
|
node_pred_label = max_idx.numpy().tolist() |
|
node_pred_score = max_value.numpy().tolist() |
|
|
|
for i, box in enumerate(boxes): |
|
if i >= len(node_pred_label): |
|
break |
|
new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]], |
|
[box[0], box[3]]] |
|
Pts = np.array([new_box], np.int32) |
|
cv2.polylines( |
|
img, [Pts.reshape((-1, 1, 2))], |
|
True, |
|
color=(255, 255, 0), |
|
thickness=1) |
|
x_min = int(min([point[0] for point in new_box])) |
|
y_min = int(min([point[1] for point in new_box])) |
|
|
|
pred_label = node_pred_label[i] |
|
if pred_label in idx_to_cls: |
|
pred_label = idx_to_cls[pred_label] |
|
pred_score = '{:.2f}'.format(node_pred_score[i]) |
|
text = pred_label + '(' + pred_score + ')' |
|
cv2.putText(pred_img, text, (x_min * 2, y_min), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) |
|
vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255 |
|
vis_img[:, :w] = img |
|
vis_img[:, w:] = pred_img |
|
save_kie_path = os.path.dirname(config['Global'][ |
|
'save_res_path']) + "/kie_results/" |
|
if not os.path.exists(save_kie_path): |
|
os.makedirs(save_kie_path) |
|
save_path = os.path.join(save_kie_path, str(count) + ".png") |
|
cv2.imwrite(save_path, vis_img) |
|
logger.info("The Kie Image saved in {}".format(save_path)) |
|
|
|
def write_kie_result(fout, node, data): |
|
""" |
|
Write infer result to output file, sorted by the predict label of each line. |
|
The format keeps the same as the input with additional score attribute. |
|
""" |
|
import json |
|
label = data['label'] |
|
annotations = json.loads(label) |
|
max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1) |
|
node_pred_label = max_idx.numpy().tolist() |
|
node_pred_score = max_value.numpy().tolist() |
|
res = [] |
|
for i, label in enumerate(node_pred_label): |
|
pred_score = '{:.2f}'.format(node_pred_score[i]) |
|
pred_res = { |
|
'label': label, |
|
'transcription': annotations[i]['transcription'], |
|
'score': pred_score, |
|
'points': annotations[i]['points'], |
|
} |
|
res.append(pred_res) |
|
res.sort(key=lambda x: x['label']) |
|
fout.writelines([json.dumps(res, ensure_ascii=False) + '\n']) |
|
|
|
def main(): |
|
global_config = config['Global'] |
|
|
|
|
|
model = build_model(config['Architecture']) |
|
load_model(config, model) |
|
|
|
|
|
transforms = [] |
|
for op in config['Eval']['dataset']['transforms']: |
|
transforms.append(op) |
|
|
|
data_dir = config['Eval']['dataset']['data_dir'] |
|
|
|
ops = create_operators(transforms, global_config) |
|
|
|
save_res_path = config['Global']['save_res_path'] |
|
class_path = config['Global']['class_path'] |
|
idx_to_cls = read_class_list(class_path) |
|
os.makedirs(os.path.dirname(save_res_path), exist_ok=True) |
|
|
|
model.eval() |
|
|
|
warmup_times = 0 |
|
count_t = [] |
|
with open(save_res_path, "w") as fout: |
|
with open(config['Global']['infer_img'], "rb") as f: |
|
lines = f.readlines() |
|
for index, data_line in enumerate(lines): |
|
if index == 10: |
|
warmup_t = time.time() |
|
data_line = data_line.decode('utf-8') |
|
substr = data_line.strip("\n").split("\t") |
|
img_path, label = data_dir + "/" + substr[0], substr[1] |
|
data = {'img_path': img_path, 'label': label} |
|
with open(data['img_path'], 'rb') as f: |
|
img = f.read() |
|
data['image'] = img |
|
st = time.time() |
|
batch = transform(data, ops) |
|
batch_pred = [0] * len(batch) |
|
for i in range(len(batch)): |
|
batch_pred[i] = paddle.to_tensor( |
|
np.expand_dims( |
|
batch[i], axis=0)) |
|
st = time.time() |
|
node, edge = model(batch_pred) |
|
node = F.softmax(node, -1) |
|
count_t.append(time.time() - st) |
|
draw_kie_result(batch, node, idx_to_cls, index) |
|
write_kie_result(fout, node, data) |
|
fout.close() |
|
logger.info("success!") |
|
logger.info("It took {} s for predict {} images.".format( |
|
np.sum(count_t), len(count_t))) |
|
ips = len(count_t[warmup_times:]) / np.sum(count_t[warmup_times:]) |
|
logger.info("The ips is {} images/s".format(ips)) |
|
|
|
|
|
if __name__ == '__main__': |
|
config, device, logger, vdl_writer = program.preprocess() |
|
main() |
|
|