|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
from PIL import Image |
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import numpy as np |
|
import math |
|
import time |
|
import traceback |
|
import paddle |
|
|
|
import tools.infer.utility as utility |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
|
|
logger = get_logger() |
|
|
|
|
|
class TextRecognizer(object): |
|
def __init__(self, args): |
|
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] |
|
self.rec_batch_num = args.rec_batch_num |
|
self.rec_algorithm = args.rec_algorithm |
|
postprocess_params = { |
|
'name': 'CTCLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
if self.rec_algorithm == "SRN": |
|
postprocess_params = { |
|
'name': 'SRNLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == "RARE": |
|
postprocess_params = { |
|
'name': 'AttnLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == 'NRTR': |
|
postprocess_params = { |
|
'name': 'NRTRLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == "SAR": |
|
postprocess_params = { |
|
'name': 'SARLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == "VisionLAN": |
|
postprocess_params = { |
|
'name': 'VLLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == 'ViTSTR': |
|
postprocess_params = { |
|
'name': 'ViTSTRLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == 'ABINet': |
|
postprocess_params = { |
|
'name': 'ABINetLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == "SPIN": |
|
postprocess_params = { |
|
'name': 'SPINLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == "RobustScanner": |
|
postprocess_params = { |
|
'name': 'SARLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char, |
|
"rm_symbol": True |
|
} |
|
elif self.rec_algorithm == 'RFL': |
|
postprocess_params = { |
|
'name': 'RFLLabelDecode', |
|
"character_dict_path": None, |
|
"use_space_char": args.use_space_char |
|
} |
|
elif self.rec_algorithm == "PREN": |
|
postprocess_params = {'name': 'PRENLabelDecode'} |
|
elif self.rec_algorithm == "CAN": |
|
self.inverse = args.rec_image_inverse |
|
postprocess_params = { |
|
'name': 'CANLabelDecode', |
|
"character_dict_path": args.rec_char_dict_path, |
|
"use_space_char": args.use_space_char |
|
} |
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \ |
|
utility.create_predictor(args, 'rec', logger) |
|
self.benchmark = args.benchmark |
|
self.use_onnx = args.use_onnx |
|
if args.benchmark: |
|
import auto_log |
|
pid = os.getpid() |
|
gpu_id = utility.get_infer_gpuid() |
|
self.autolog = auto_log.AutoLogger( |
|
model_name="rec", |
|
model_precision=args.precision, |
|
batch_size=args.rec_batch_num, |
|
data_shape="dynamic", |
|
save_path=None, |
|
inference_config=self.config, |
|
pids=pid, |
|
process_name=None, |
|
gpu_ids=gpu_id if args.use_gpu else None, |
|
time_keys=[ |
|
'preprocess_time', 'inference_time', 'postprocess_time' |
|
], |
|
warmup=0, |
|
logger=logger) |
|
|
|
def resize_norm_img(self, img, max_wh_ratio): |
|
imgC, imgH, imgW = self.rec_image_shape |
|
if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR': |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
|
|
image_pil = Image.fromarray(np.uint8(img)) |
|
if self.rec_algorithm == 'ViTSTR': |
|
img = image_pil.resize([imgW, imgH], Image.BICUBIC) |
|
else: |
|
img = image_pil.resize([imgW, imgH], Image.ANTIALIAS) |
|
img = np.array(img) |
|
norm_img = np.expand_dims(img, -1) |
|
norm_img = norm_img.transpose((2, 0, 1)) |
|
if self.rec_algorithm == 'ViTSTR': |
|
norm_img = norm_img.astype(np.float32) / 255. |
|
else: |
|
norm_img = norm_img.astype(np.float32) / 128. - 1. |
|
return norm_img |
|
elif self.rec_algorithm == 'RFL': |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_CUBIC) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image / 255 |
|
resized_image = resized_image[np.newaxis, :] |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
return resized_image |
|
|
|
assert imgC == img.shape[2] |
|
imgW = int((imgH * max_wh_ratio)) |
|
if self.use_onnx: |
|
w = self.input_tensor.shape[3:][0] |
|
if w is not None and w > 0: |
|
imgW = w |
|
|
|
h, w = img.shape[:2] |
|
ratio = w / float(h) |
|
if math.ceil(imgH * ratio) > imgW: |
|
resized_w = imgW |
|
else: |
|
resized_w = int(math.ceil(imgH * ratio)) |
|
if self.rec_algorithm == 'RARE': |
|
if resized_w > self.rec_image_shape[2]: |
|
resized_w = self.rec_image_shape[2] |
|
imgW = self.rec_image_shape[2] |
|
resized_image = cv2.resize(img, (resized_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) |
|
padding_im[:, :, 0:resized_w] = resized_image |
|
return padding_im |
|
|
|
def resize_norm_img_vl(self, img, image_shape): |
|
|
|
imgC, imgH, imgW = image_shape |
|
img = img[:, :, ::-1] |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
return resized_image |
|
|
|
def resize_norm_img_srn(self, img, image_shape): |
|
imgC, imgH, imgW = image_shape |
|
|
|
img_black = np.zeros((imgH, imgW)) |
|
im_hei = img.shape[0] |
|
im_wid = img.shape[1] |
|
|
|
if im_wid <= im_hei * 1: |
|
img_new = cv2.resize(img, (imgH * 1, imgH)) |
|
elif im_wid <= im_hei * 2: |
|
img_new = cv2.resize(img, (imgH * 2, imgH)) |
|
elif im_wid <= im_hei * 3: |
|
img_new = cv2.resize(img, (imgH * 3, imgH)) |
|
else: |
|
img_new = cv2.resize(img, (imgW, imgH)) |
|
|
|
img_np = np.asarray(img_new) |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) |
|
img_black[:, 0:img_np.shape[1]] = img_np |
|
img_black = img_black[:, :, np.newaxis] |
|
|
|
row, col, c = img_black.shape |
|
c = 1 |
|
|
|
return np.reshape(img_black, (c, row, col)).astype(np.float32) |
|
|
|
def srn_other_inputs(self, image_shape, num_heads, max_text_length): |
|
|
|
imgC, imgH, imgW = image_shape |
|
feature_dim = int((imgH / 8) * (imgW / 8)) |
|
|
|
encoder_word_pos = np.array(range(0, feature_dim)).reshape( |
|
(feature_dim, 1)).astype('int64') |
|
gsrm_word_pos = np.array(range(0, max_text_length)).reshape( |
|
(max_text_length, 1)).astype('int64') |
|
|
|
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) |
|
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( |
|
[-1, 1, max_text_length, max_text_length]) |
|
gsrm_slf_attn_bias1 = np.tile( |
|
gsrm_slf_attn_bias1, |
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9] |
|
|
|
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( |
|
[-1, 1, max_text_length, max_text_length]) |
|
gsrm_slf_attn_bias2 = np.tile( |
|
gsrm_slf_attn_bias2, |
|
[1, num_heads, 1, 1]).astype('float32') * [-1e9] |
|
|
|
encoder_word_pos = encoder_word_pos[np.newaxis, :] |
|
gsrm_word_pos = gsrm_word_pos[np.newaxis, :] |
|
|
|
return [ |
|
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, |
|
gsrm_slf_attn_bias2 |
|
] |
|
|
|
def process_image_srn(self, img, image_shape, num_heads, max_text_length): |
|
norm_img = self.resize_norm_img_srn(img, image_shape) |
|
norm_img = norm_img[np.newaxis, :] |
|
|
|
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ |
|
self.srn_other_inputs(image_shape, num_heads, max_text_length) |
|
|
|
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) |
|
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) |
|
encoder_word_pos = encoder_word_pos.astype(np.int64) |
|
gsrm_word_pos = gsrm_word_pos.astype(np.int64) |
|
|
|
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, |
|
gsrm_slf_attn_bias2) |
|
|
|
def resize_norm_img_sar(self, img, image_shape, |
|
width_downsample_ratio=0.25): |
|
imgC, imgH, imgW_min, imgW_max = image_shape |
|
h = img.shape[0] |
|
w = img.shape[1] |
|
valid_ratio = 1.0 |
|
|
|
width_divisor = int(1 / width_downsample_ratio) |
|
|
|
ratio = w / float(h) |
|
resize_w = math.ceil(imgH * ratio) |
|
if resize_w % width_divisor != 0: |
|
resize_w = round(resize_w / width_divisor) * width_divisor |
|
if imgW_min is not None: |
|
resize_w = max(imgW_min, resize_w) |
|
if imgW_max is not None: |
|
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) |
|
resize_w = min(imgW_max, resize_w) |
|
resized_image = cv2.resize(img, (resize_w, imgH)) |
|
resized_image = resized_image.astype('float32') |
|
|
|
if image_shape[0] == 1: |
|
resized_image = resized_image / 255 |
|
resized_image = resized_image[np.newaxis, :] |
|
else: |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
resize_shape = resized_image.shape |
|
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) |
|
padding_im[:, :, 0:resize_w] = resized_image |
|
pad_shape = padding_im.shape |
|
|
|
return padding_im, resize_shape, pad_shape, valid_ratio |
|
|
|
def resize_norm_img_spin(self, img): |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
|
|
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC) |
|
img = np.array(img, np.float32) |
|
img = np.expand_dims(img, -1) |
|
img = img.transpose((2, 0, 1)) |
|
mean = [127.5] |
|
std = [127.5] |
|
mean = np.array(mean, dtype=np.float32) |
|
std = np.array(std, dtype=np.float32) |
|
mean = np.float32(mean.reshape(1, -1)) |
|
stdinv = 1 / np.float32(std.reshape(1, -1)) |
|
img -= mean |
|
img *= stdinv |
|
return img |
|
|
|
def resize_norm_img_svtr(self, img, image_shape): |
|
|
|
imgC, imgH, imgW = image_shape |
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image.transpose((2, 0, 1)) / 255 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
return resized_image |
|
|
|
def resize_norm_img_abinet(self, img, image_shape): |
|
|
|
imgC, imgH, imgW = image_shape |
|
|
|
resized_image = cv2.resize( |
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) |
|
resized_image = resized_image.astype('float32') |
|
resized_image = resized_image / 255. |
|
|
|
mean = np.array([0.485, 0.456, 0.406]) |
|
std = np.array([0.229, 0.224, 0.225]) |
|
resized_image = ( |
|
resized_image - mean[None, None, ...]) / std[None, None, ...] |
|
resized_image = resized_image.transpose((2, 0, 1)) |
|
resized_image = resized_image.astype('float32') |
|
|
|
return resized_image |
|
|
|
def norm_img_can(self, img, image_shape): |
|
|
|
img = cv2.cvtColor( |
|
img, cv2.COLOR_BGR2GRAY) |
|
|
|
if self.inverse: |
|
img = 255 - img |
|
|
|
if self.rec_image_shape[0] == 1: |
|
h, w = img.shape |
|
_, imgH, imgW = self.rec_image_shape |
|
if h < imgH or w < imgW: |
|
padding_h = max(imgH - h, 0) |
|
padding_w = max(imgW - w, 0) |
|
img_padded = np.pad(img, ((0, padding_h), (0, padding_w)), |
|
'constant', |
|
constant_values=(255)) |
|
img = img_padded |
|
|
|
img = np.expand_dims(img, 0) / 255.0 |
|
img = img.astype('float32') |
|
|
|
return img |
|
|
|
def __call__(self, img_list): |
|
img_num = len(img_list) |
|
|
|
width_list = [] |
|
for img in img_list: |
|
width_list.append(img.shape[1] / float(img.shape[0])) |
|
|
|
indices = np.argsort(np.array(width_list)) |
|
rec_res = [['', 0.0]] * img_num |
|
batch_num = self.rec_batch_num |
|
st = time.time() |
|
if self.benchmark: |
|
self.autolog.times.start() |
|
for beg_img_no in range(0, img_num, batch_num): |
|
end_img_no = min(img_num, beg_img_no + batch_num) |
|
norm_img_batch = [] |
|
if self.rec_algorithm == "SRN": |
|
encoder_word_pos_list = [] |
|
gsrm_word_pos_list = [] |
|
gsrm_slf_attn_bias1_list = [] |
|
gsrm_slf_attn_bias2_list = [] |
|
if self.rec_algorithm == "SAR": |
|
valid_ratios = [] |
|
imgC, imgH, imgW = self.rec_image_shape[:3] |
|
max_wh_ratio = imgW / imgH |
|
|
|
for ino in range(beg_img_no, end_img_no): |
|
h, w = img_list[indices[ino]].shape[0:2] |
|
wh_ratio = w * 1.0 / h |
|
max_wh_ratio = max(max_wh_ratio, wh_ratio) |
|
for ino in range(beg_img_no, end_img_no): |
|
if self.rec_algorithm == "SAR": |
|
norm_img, _, _, valid_ratio = self.resize_norm_img_sar( |
|
img_list[indices[ino]], self.rec_image_shape) |
|
norm_img = norm_img[np.newaxis, :] |
|
valid_ratio = np.expand_dims(valid_ratio, axis=0) |
|
valid_ratios.append(valid_ratio) |
|
norm_img_batch.append(norm_img) |
|
elif self.rec_algorithm == "SRN": |
|
norm_img = self.process_image_srn( |
|
img_list[indices[ino]], self.rec_image_shape, 8, 25) |
|
encoder_word_pos_list.append(norm_img[1]) |
|
gsrm_word_pos_list.append(norm_img[2]) |
|
gsrm_slf_attn_bias1_list.append(norm_img[3]) |
|
gsrm_slf_attn_bias2_list.append(norm_img[4]) |
|
norm_img_batch.append(norm_img[0]) |
|
elif self.rec_algorithm == "SVTR": |
|
norm_img = self.resize_norm_img_svtr(img_list[indices[ino]], |
|
self.rec_image_shape) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
elif self.rec_algorithm in ["VisionLAN", "PREN"]: |
|
norm_img = self.resize_norm_img_vl(img_list[indices[ino]], |
|
self.rec_image_shape) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
elif self.rec_algorithm == 'SPIN': |
|
norm_img = self.resize_norm_img_spin(img_list[indices[ino]]) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
elif self.rec_algorithm == "ABINet": |
|
norm_img = self.resize_norm_img_abinet( |
|
img_list[indices[ino]], self.rec_image_shape) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
elif self.rec_algorithm == "RobustScanner": |
|
norm_img, _, _, valid_ratio = self.resize_norm_img_sar( |
|
img_list[indices[ino]], |
|
self.rec_image_shape, |
|
width_downsample_ratio=0.25) |
|
norm_img = norm_img[np.newaxis, :] |
|
valid_ratio = np.expand_dims(valid_ratio, axis=0) |
|
valid_ratios = [] |
|
valid_ratios.append(valid_ratio) |
|
norm_img_batch.append(norm_img) |
|
word_positions_list = [] |
|
word_positions = np.array(range(0, 40)).astype('int64') |
|
word_positions = np.expand_dims(word_positions, axis=0) |
|
word_positions_list.append(word_positions) |
|
elif self.rec_algorithm == "CAN": |
|
norm_img = self.norm_img_can(img_list[indices[ino]], |
|
max_wh_ratio) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
norm_image_mask = np.ones(norm_img.shape, dtype='float32') |
|
word_label = np.ones([1, 36], dtype='int64') |
|
norm_img_mask_batch = [] |
|
word_label_list = [] |
|
norm_img_mask_batch.append(norm_image_mask) |
|
word_label_list.append(word_label) |
|
else: |
|
norm_img = self.resize_norm_img(img_list[indices[ino]], |
|
max_wh_ratio) |
|
norm_img = norm_img[np.newaxis, :] |
|
norm_img_batch.append(norm_img) |
|
norm_img_batch = np.concatenate(norm_img_batch) |
|
norm_img_batch = norm_img_batch.copy() |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
|
|
if self.rec_algorithm == "SRN": |
|
encoder_word_pos_list = np.concatenate(encoder_word_pos_list) |
|
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list) |
|
gsrm_slf_attn_bias1_list = np.concatenate( |
|
gsrm_slf_attn_bias1_list) |
|
gsrm_slf_attn_bias2_list = np.concatenate( |
|
gsrm_slf_attn_bias2_list) |
|
|
|
inputs = [ |
|
norm_img_batch, |
|
encoder_word_pos_list, |
|
gsrm_word_pos_list, |
|
gsrm_slf_attn_bias1_list, |
|
gsrm_slf_attn_bias2_list, |
|
] |
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = norm_img_batch |
|
outputs = self.predictor.run(self.output_tensors, |
|
input_dict) |
|
preds = {"predict": outputs[2]} |
|
else: |
|
input_names = self.predictor.get_input_names() |
|
for i in range(len(input_names)): |
|
input_tensor = self.predictor.get_input_handle( |
|
input_names[i]) |
|
input_tensor.copy_from_cpu(inputs[i]) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
preds = {"predict": outputs[2]} |
|
elif self.rec_algorithm == "SAR": |
|
valid_ratios = np.concatenate(valid_ratios) |
|
inputs = [ |
|
norm_img_batch, |
|
np.array( |
|
[valid_ratios], dtype=np.float32), |
|
] |
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = norm_img_batch |
|
outputs = self.predictor.run(self.output_tensors, |
|
input_dict) |
|
preds = outputs[0] |
|
else: |
|
input_names = self.predictor.get_input_names() |
|
for i in range(len(input_names)): |
|
input_tensor = self.predictor.get_input_handle( |
|
input_names[i]) |
|
input_tensor.copy_from_cpu(inputs[i]) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
preds = outputs[0] |
|
elif self.rec_algorithm == "RobustScanner": |
|
valid_ratios = np.concatenate(valid_ratios) |
|
word_positions_list = np.concatenate(word_positions_list) |
|
inputs = [norm_img_batch, valid_ratios, word_positions_list] |
|
|
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = norm_img_batch |
|
outputs = self.predictor.run(self.output_tensors, |
|
input_dict) |
|
preds = outputs[0] |
|
else: |
|
input_names = self.predictor.get_input_names() |
|
for i in range(len(input_names)): |
|
input_tensor = self.predictor.get_input_handle( |
|
input_names[i]) |
|
input_tensor.copy_from_cpu(inputs[i]) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
preds = outputs[0] |
|
elif self.rec_algorithm == "CAN": |
|
norm_img_mask_batch = np.concatenate(norm_img_mask_batch) |
|
word_label_list = np.concatenate(word_label_list) |
|
inputs = [norm_img_batch, norm_img_mask_batch, word_label_list] |
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = norm_img_batch |
|
outputs = self.predictor.run(self.output_tensors, |
|
input_dict) |
|
preds = outputs |
|
else: |
|
input_names = self.predictor.get_input_names() |
|
input_tensor = [] |
|
for i in range(len(input_names)): |
|
input_tensor_i = self.predictor.get_input_handle( |
|
input_names[i]) |
|
input_tensor_i.copy_from_cpu(inputs[i]) |
|
input_tensor.append(input_tensor_i) |
|
self.input_tensor = input_tensor |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
preds = outputs |
|
else: |
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = norm_img_batch |
|
outputs = self.predictor.run(self.output_tensors, |
|
input_dict) |
|
preds = outputs[0] |
|
else: |
|
self.input_tensor.copy_from_cpu(norm_img_batch) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.benchmark: |
|
self.autolog.times.stamp() |
|
if len(outputs) != 1: |
|
preds = outputs |
|
else: |
|
preds = outputs[0] |
|
rec_result = self.postprocess_op(preds) |
|
for rno in range(len(rec_result)): |
|
rec_res[indices[beg_img_no + rno]] = rec_result[rno] |
|
if self.benchmark: |
|
self.autolog.times.end(stamp=True) |
|
return rec_res, time.time() - st |
|
|
|
|
|
def main(args): |
|
image_file_list = get_image_file_list(args.image_dir) |
|
text_recognizer = TextRecognizer(args) |
|
valid_image_file_list = [] |
|
img_list = [] |
|
|
|
logger.info( |
|
"In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', " |
|
"if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320" |
|
) |
|
|
|
if args.warmup: |
|
img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8) |
|
for i in range(2): |
|
res = text_recognizer([img] * int(args.rec_batch_num)) |
|
|
|
for image_file in image_file_list: |
|
img, flag, _ = check_and_read(image_file) |
|
if not flag: |
|
img = cv2.imread(image_file) |
|
if img is None: |
|
logger.info("error in loading image:{}".format(image_file)) |
|
continue |
|
valid_image_file_list.append(image_file) |
|
img_list.append(img) |
|
try: |
|
rec_res, _ = text_recognizer(img_list) |
|
|
|
except Exception as E: |
|
logger.info(traceback.format_exc()) |
|
logger.info(E) |
|
exit() |
|
for ino in range(len(img_list)): |
|
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], |
|
rec_res[ino])) |
|
if args.benchmark: |
|
text_recognizer.autolog.report() |
|
|
|
|
|
if __name__ == "__main__": |
|
main(utility.parse_args()) |
|
|