|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
from paddle import nn |
|
import paddle |
|
|
|
from .det_basic_loss import DiceLoss |
|
from ppocr.utils.e2e_utils.extract_batchsize import pre_process |
|
|
|
|
|
class PGLoss(nn.Layer): |
|
def __init__(self, |
|
tcl_bs, |
|
max_text_length, |
|
max_text_nums, |
|
pad_num, |
|
eps=1e-6, |
|
**kwargs): |
|
super(PGLoss, self).__init__() |
|
self.tcl_bs = tcl_bs |
|
self.max_text_nums = max_text_nums |
|
self.max_text_length = max_text_length |
|
self.pad_num = pad_num |
|
self.dice_loss = DiceLoss(eps=eps) |
|
|
|
def border_loss(self, f_border, l_border, l_score, l_mask): |
|
l_border_split, l_border_norm = paddle.tensor.split( |
|
l_border, num_or_sections=[4, 1], axis=1) |
|
f_border_split = f_border |
|
b, c, h, w = l_border_norm.shape |
|
l_border_norm_split = paddle.expand( |
|
x=l_border_norm, shape=[b, 4 * c, h, w]) |
|
b, c, h, w = l_score.shape |
|
l_border_score = paddle.expand(x=l_score, shape=[b, 4 * c, h, w]) |
|
b, c, h, w = l_mask.shape |
|
l_border_mask = paddle.expand(x=l_mask, shape=[b, 4 * c, h, w]) |
|
border_diff = l_border_split - f_border_split |
|
abs_border_diff = paddle.abs(border_diff) |
|
border_sign = abs_border_diff < 1.0 |
|
border_sign = paddle.cast(border_sign, dtype='float32') |
|
border_sign.stop_gradient = True |
|
border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \ |
|
(abs_border_diff - 0.5) * (1.0 - border_sign) |
|
border_out_loss = l_border_norm_split * border_in_loss |
|
border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \ |
|
(paddle.sum(l_border_score * l_border_mask) + 1e-5) |
|
return border_loss |
|
|
|
def direction_loss(self, f_direction, l_direction, l_score, l_mask): |
|
l_direction_split, l_direction_norm = paddle.tensor.split( |
|
l_direction, num_or_sections=[2, 1], axis=1) |
|
f_direction_split = f_direction |
|
b, c, h, w = l_direction_norm.shape |
|
l_direction_norm_split = paddle.expand( |
|
x=l_direction_norm, shape=[b, 2 * c, h, w]) |
|
b, c, h, w = l_score.shape |
|
l_direction_score = paddle.expand(x=l_score, shape=[b, 2 * c, h, w]) |
|
b, c, h, w = l_mask.shape |
|
l_direction_mask = paddle.expand(x=l_mask, shape=[b, 2 * c, h, w]) |
|
direction_diff = l_direction_split - f_direction_split |
|
abs_direction_diff = paddle.abs(direction_diff) |
|
direction_sign = abs_direction_diff < 1.0 |
|
direction_sign = paddle.cast(direction_sign, dtype='float32') |
|
direction_sign.stop_gradient = True |
|
direction_in_loss = 0.5 * abs_direction_diff * abs_direction_diff * direction_sign + \ |
|
(abs_direction_diff - 0.5) * (1.0 - direction_sign) |
|
direction_out_loss = l_direction_norm_split * direction_in_loss |
|
direction_loss = paddle.sum(direction_out_loss * l_direction_score * l_direction_mask) / \ |
|
(paddle.sum(l_direction_score * l_direction_mask) + 1e-5) |
|
return direction_loss |
|
|
|
def ctcloss(self, f_char, tcl_pos, tcl_mask, tcl_label, label_t): |
|
f_char = paddle.transpose(f_char, [0, 2, 3, 1]) |
|
tcl_pos = paddle.reshape(tcl_pos, [-1, 3]) |
|
tcl_pos = paddle.cast(tcl_pos, dtype=int) |
|
f_tcl_char = paddle.gather_nd(f_char, tcl_pos) |
|
f_tcl_char = paddle.reshape( |
|
f_tcl_char, [-1, 64, self.pad_num + 1]) |
|
f_tcl_char_fg, f_tcl_char_bg = paddle.split( |
|
f_tcl_char, [self.pad_num, 1], axis=2) |
|
f_tcl_char_bg = f_tcl_char_bg * tcl_mask + (1.0 - tcl_mask) * 20.0 |
|
b, c, l = tcl_mask.shape |
|
tcl_mask_fg = paddle.expand(x=tcl_mask, shape=[b, c, self.pad_num * l]) |
|
tcl_mask_fg.stop_gradient = True |
|
f_tcl_char_fg = f_tcl_char_fg * tcl_mask_fg + (1.0 - tcl_mask_fg) * ( |
|
-20.0) |
|
f_tcl_char_mask = paddle.concat([f_tcl_char_fg, f_tcl_char_bg], axis=2) |
|
f_tcl_char_ld = paddle.transpose(f_tcl_char_mask, (1, 0, 2)) |
|
N, B, _ = f_tcl_char_ld.shape |
|
input_lengths = paddle.to_tensor([N] * B, dtype='int64') |
|
cost = paddle.nn.functional.ctc_loss( |
|
log_probs=f_tcl_char_ld, |
|
labels=tcl_label, |
|
input_lengths=input_lengths, |
|
label_lengths=label_t, |
|
blank=self.pad_num, |
|
reduction='none') |
|
cost = cost.mean() |
|
return cost |
|
|
|
def forward(self, predicts, labels): |
|
images, tcl_maps, tcl_label_maps, border_maps \ |
|
, direction_maps, training_masks, label_list, pos_list, pos_mask = labels |
|
|
|
pos_list, pos_mask, label_list, label_t = pre_process( |
|
label_list, pos_list, pos_mask, self.max_text_length, |
|
self.max_text_nums, self.pad_num, self.tcl_bs) |
|
|
|
f_score, f_border, f_direction, f_char = predicts['f_score'], predicts['f_border'], predicts['f_direction'], \ |
|
predicts['f_char'] |
|
score_loss = self.dice_loss(f_score, tcl_maps, training_masks) |
|
border_loss = self.border_loss(f_border, border_maps, tcl_maps, |
|
training_masks) |
|
direction_loss = self.direction_loss(f_direction, direction_maps, |
|
tcl_maps, training_masks) |
|
ctc_loss = self.ctcloss(f_char, pos_list, pos_mask, label_list, label_t) |
|
loss_all = score_loss + border_loss + direction_loss + 5 * ctc_loss |
|
|
|
losses = { |
|
'loss': loss_all, |
|
"score_loss": score_loss, |
|
"border_loss": border_loss, |
|
"direction_loss": direction_loss, |
|
"ctc_loss": ctc_loss |
|
} |
|
return losses |
|
|