|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
from .det_basic_loss import DiceLoss |
|
|
|
|
|
class EASTLoss(nn.Layer): |
|
""" |
|
""" |
|
|
|
def __init__(self, |
|
eps=1e-6, |
|
**kwargs): |
|
super(EASTLoss, self).__init__() |
|
self.dice_loss = DiceLoss(eps=eps) |
|
|
|
def forward(self, predicts, labels): |
|
l_score, l_geo, l_mask = labels[1:] |
|
f_score = predicts['f_score'] |
|
f_geo = predicts['f_geo'] |
|
|
|
dice_loss = self.dice_loss(f_score, l_score, l_mask) |
|
|
|
|
|
channels = 8 |
|
l_geo_split = paddle.split( |
|
l_geo, num_or_sections=channels + 1, axis=1) |
|
f_geo_split = paddle.split(f_geo, num_or_sections=channels, axis=1) |
|
smooth_l1 = 0 |
|
for i in range(0, channels): |
|
geo_diff = l_geo_split[i] - f_geo_split[i] |
|
abs_geo_diff = paddle.abs(geo_diff) |
|
smooth_l1_sign = paddle.less_than(abs_geo_diff, l_score) |
|
smooth_l1_sign = paddle.cast(smooth_l1_sign, dtype='float32') |
|
in_loss = abs_geo_diff * abs_geo_diff * smooth_l1_sign + \ |
|
(abs_geo_diff - 0.5) * (1.0 - smooth_l1_sign) |
|
out_loss = l_geo_split[-1] / channels * in_loss * l_score |
|
smooth_l1 += out_loss |
|
smooth_l1_loss = paddle.mean(smooth_l1 * l_score) |
|
|
|
dice_loss = dice_loss * 0.01 |
|
total_loss = dice_loss + smooth_l1_loss |
|
losses = {"loss":total_loss, \ |
|
"dice_loss":dice_loss,\ |
|
"smooth_l1_loss":smooth_l1_loss} |
|
return losses |
|
|