|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/fcenet_targets.py |
|
""" |
|
|
|
import cv2 |
|
import numpy as np |
|
from numpy.fft import fft |
|
from numpy.linalg import norm |
|
import sys |
|
|
|
def vector_slope(vec): |
|
assert len(vec) == 2 |
|
return abs(vec[1] / (vec[0] + 1e-8)) |
|
|
|
class FCENetTargets: |
|
"""Generate the ground truth targets of FCENet: Fourier Contour Embedding |
|
for Arbitrary-Shaped Text Detection. |
|
|
|
[https://arxiv.org/abs/2104.10442] |
|
|
|
Args: |
|
fourier_degree (int): The maximum Fourier transform degree k. |
|
resample_step (float): The step size for resampling the text center |
|
line (TCL). It's better not to exceed half of the minimum width. |
|
center_region_shrink_ratio (float): The shrink ratio of text center |
|
region. |
|
level_size_divisors (tuple(int)): The downsample ratio on each level. |
|
level_proportion_range (tuple(tuple(int))): The range of text sizes |
|
assigned to each level. |
|
""" |
|
|
|
def __init__(self, |
|
fourier_degree=5, |
|
resample_step=4.0, |
|
center_region_shrink_ratio=0.3, |
|
level_size_divisors=(8, 16, 32), |
|
level_proportion_range=((0, 0.25), (0.2, 0.65), (0.55, 1.0)), |
|
orientation_thr=2.0, |
|
**kwargs): |
|
|
|
super().__init__() |
|
assert isinstance(level_size_divisors, tuple) |
|
assert isinstance(level_proportion_range, tuple) |
|
assert len(level_size_divisors) == len(level_proportion_range) |
|
self.fourier_degree = fourier_degree |
|
self.resample_step = resample_step |
|
self.center_region_shrink_ratio = center_region_shrink_ratio |
|
self.level_size_divisors = level_size_divisors |
|
self.level_proportion_range = level_proportion_range |
|
|
|
self.orientation_thr = orientation_thr |
|
|
|
def vector_angle(self, vec1, vec2): |
|
if vec1.ndim > 1: |
|
unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8).reshape((-1, 1)) |
|
else: |
|
unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8) |
|
if vec2.ndim > 1: |
|
unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8).reshape((-1, 1)) |
|
else: |
|
unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8) |
|
return np.arccos( |
|
np.clip( |
|
np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0)) |
|
|
|
def resample_line(self, line, n): |
|
"""Resample n points on a line. |
|
|
|
Args: |
|
line (ndarray): The points composing a line. |
|
n (int): The resampled points number. |
|
|
|
Returns: |
|
resampled_line (ndarray): The points composing the resampled line. |
|
""" |
|
|
|
assert line.ndim == 2 |
|
assert line.shape[0] >= 2 |
|
assert line.shape[1] == 2 |
|
assert isinstance(n, int) |
|
assert n > 0 |
|
|
|
length_list = [ |
|
norm(line[i + 1] - line[i]) for i in range(len(line) - 1) |
|
] |
|
total_length = sum(length_list) |
|
length_cumsum = np.cumsum([0.0] + length_list) |
|
delta_length = total_length / (float(n) + 1e-8) |
|
|
|
current_edge_ind = 0 |
|
resampled_line = [line[0]] |
|
|
|
for i in range(1, n): |
|
current_line_len = i * delta_length |
|
|
|
while current_edge_ind + 1 < len(length_cumsum) and current_line_len >= length_cumsum[current_edge_ind + 1]: |
|
current_edge_ind += 1 |
|
|
|
current_edge_end_shift = current_line_len - length_cumsum[ |
|
current_edge_ind] |
|
|
|
if current_edge_ind >= len(length_list): |
|
break |
|
end_shift_ratio = current_edge_end_shift / length_list[ |
|
current_edge_ind] |
|
current_point = line[current_edge_ind] + (line[current_edge_ind + 1] |
|
- line[current_edge_ind] |
|
) * end_shift_ratio |
|
resampled_line.append(current_point) |
|
resampled_line.append(line[-1]) |
|
resampled_line = np.array(resampled_line) |
|
|
|
return resampled_line |
|
|
|
def reorder_poly_edge(self, points): |
|
"""Get the respective points composing head edge, tail edge, top |
|
sideline and bottom sideline. |
|
|
|
Args: |
|
points (ndarray): The points composing a text polygon. |
|
|
|
Returns: |
|
head_edge (ndarray): The two points composing the head edge of text |
|
polygon. |
|
tail_edge (ndarray): The two points composing the tail edge of text |
|
polygon. |
|
top_sideline (ndarray): The points composing top curved sideline of |
|
text polygon. |
|
bot_sideline (ndarray): The points composing bottom curved sideline |
|
of text polygon. |
|
""" |
|
|
|
assert points.ndim == 2 |
|
assert points.shape[0] >= 4 |
|
assert points.shape[1] == 2 |
|
|
|
head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr) |
|
head_edge, tail_edge = points[head_inds], points[tail_inds] |
|
|
|
pad_points = np.vstack([points, points]) |
|
if tail_inds[1] < 1: |
|
tail_inds[1] = len(points) |
|
sideline1 = pad_points[head_inds[1]:tail_inds[1]] |
|
sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))] |
|
sideline_mean_shift = np.mean( |
|
sideline1, axis=0) - np.mean( |
|
sideline2, axis=0) |
|
|
|
if sideline_mean_shift[1] > 0: |
|
top_sideline, bot_sideline = sideline2, sideline1 |
|
else: |
|
top_sideline, bot_sideline = sideline1, sideline2 |
|
|
|
return head_edge, tail_edge, top_sideline, bot_sideline |
|
|
|
def find_head_tail(self, points, orientation_thr): |
|
"""Find the head edge and tail edge of a text polygon. |
|
|
|
Args: |
|
points (ndarray): The points composing a text polygon. |
|
orientation_thr (float): The threshold for distinguishing between |
|
head edge and tail edge among the horizontal and vertical edges |
|
of a quadrangle. |
|
|
|
Returns: |
|
head_inds (list): The indexes of two points composing head edge. |
|
tail_inds (list): The indexes of two points composing tail edge. |
|
""" |
|
|
|
assert points.ndim == 2 |
|
assert points.shape[0] >= 4 |
|
assert points.shape[1] == 2 |
|
assert isinstance(orientation_thr, float) |
|
|
|
if len(points) > 4: |
|
pad_points = np.vstack([points, points[0]]) |
|
edge_vec = pad_points[1:] - pad_points[:-1] |
|
|
|
theta_sum = [] |
|
adjacent_vec_theta = [] |
|
for i, edge_vec1 in enumerate(edge_vec): |
|
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]] |
|
adjacent_edge_vec = edge_vec[adjacent_ind] |
|
temp_theta_sum = np.sum( |
|
self.vector_angle(edge_vec1, adjacent_edge_vec)) |
|
temp_adjacent_theta = self.vector_angle(adjacent_edge_vec[0], |
|
adjacent_edge_vec[1]) |
|
theta_sum.append(temp_theta_sum) |
|
adjacent_vec_theta.append(temp_adjacent_theta) |
|
theta_sum_score = np.array(theta_sum) / np.pi |
|
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi |
|
poly_center = np.mean(points, axis=0) |
|
edge_dist = np.maximum( |
|
norm( |
|
pad_points[1:] - poly_center, axis=-1), |
|
norm( |
|
pad_points[:-1] - poly_center, axis=-1)) |
|
dist_score = edge_dist / np.max(edge_dist) |
|
position_score = np.zeros(len(edge_vec)) |
|
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score |
|
score += 0.35 * dist_score |
|
if len(points) % 2 == 0: |
|
position_score[(len(score) // 2 - 1)] += 1 |
|
position_score[-1] += 1 |
|
score += 0.1 * position_score |
|
pad_score = np.concatenate([score, score]) |
|
score_matrix = np.zeros((len(score), len(score) - 3)) |
|
x = np.arange(len(score) - 3) / float(len(score) - 4) |
|
gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power( |
|
(x - 0.5) / 0.5, 2.) / 2) |
|
gaussian = gaussian / np.max(gaussian) |
|
for i in range(len(score)): |
|
score_matrix[i, :] = score[i] + pad_score[(i + 2):(i + len( |
|
score) - 1)] * gaussian * 0.3 |
|
|
|
head_start, tail_increment = np.unravel_index(score_matrix.argmax(), |
|
score_matrix.shape) |
|
tail_start = (head_start + tail_increment + 2) % len(points) |
|
head_end = (head_start + 1) % len(points) |
|
tail_end = (tail_start + 1) % len(points) |
|
|
|
if head_end > tail_end: |
|
head_start, tail_start = tail_start, head_start |
|
head_end, tail_end = tail_end, head_end |
|
head_inds = [head_start, head_end] |
|
tail_inds = [tail_start, tail_end] |
|
else: |
|
if vector_slope(points[1] - points[0]) + vector_slope( |
|
points[3] - points[2]) < vector_slope(points[ |
|
2] - points[1]) + vector_slope(points[0] - points[ |
|
3]): |
|
horizontal_edge_inds = [[0, 1], [2, 3]] |
|
vertical_edge_inds = [[3, 0], [1, 2]] |
|
else: |
|
horizontal_edge_inds = [[3, 0], [1, 2]] |
|
vertical_edge_inds = [[0, 1], [2, 3]] |
|
|
|
vertical_len_sum = norm(points[vertical_edge_inds[0][0]] - points[ |
|
vertical_edge_inds[0][1]]) + norm(points[vertical_edge_inds[1][ |
|
0]] - points[vertical_edge_inds[1][1]]) |
|
horizontal_len_sum = norm(points[horizontal_edge_inds[0][ |
|
0]] - points[horizontal_edge_inds[0][1]]) + norm(points[ |
|
horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1] |
|
[1]]) |
|
|
|
if vertical_len_sum > horizontal_len_sum * orientation_thr: |
|
head_inds = horizontal_edge_inds[0] |
|
tail_inds = horizontal_edge_inds[1] |
|
else: |
|
head_inds = vertical_edge_inds[0] |
|
tail_inds = vertical_edge_inds[1] |
|
|
|
return head_inds, tail_inds |
|
|
|
def resample_sidelines(self, sideline1, sideline2, resample_step): |
|
"""Resample two sidelines to be of the same points number according to |
|
step size. |
|
|
|
Args: |
|
sideline1 (ndarray): The points composing a sideline of a text |
|
polygon. |
|
sideline2 (ndarray): The points composing another sideline of a |
|
text polygon. |
|
resample_step (float): The resampled step size. |
|
|
|
Returns: |
|
resampled_line1 (ndarray): The resampled line 1. |
|
resampled_line2 (ndarray): The resampled line 2. |
|
""" |
|
|
|
assert sideline1.ndim == sideline2.ndim == 2 |
|
assert sideline1.shape[1] == sideline2.shape[1] == 2 |
|
assert sideline1.shape[0] >= 2 |
|
assert sideline2.shape[0] >= 2 |
|
assert isinstance(resample_step, float) |
|
|
|
length1 = sum([ |
|
norm(sideline1[i + 1] - sideline1[i]) |
|
for i in range(len(sideline1) - 1) |
|
]) |
|
length2 = sum([ |
|
norm(sideline2[i + 1] - sideline2[i]) |
|
for i in range(len(sideline2) - 1) |
|
]) |
|
|
|
total_length = (length1 + length2) / 2 |
|
resample_point_num = max(int(float(total_length) / resample_step), 1) |
|
|
|
resampled_line1 = self.resample_line(sideline1, resample_point_num) |
|
resampled_line2 = self.resample_line(sideline2, resample_point_num) |
|
|
|
return resampled_line1, resampled_line2 |
|
|
|
def generate_center_region_mask(self, img_size, text_polys): |
|
"""Generate text center region mask. |
|
|
|
Args: |
|
img_size (tuple): The image size of (height, width). |
|
text_polys (list[list[ndarray]]): The list of text polygons. |
|
|
|
Returns: |
|
center_region_mask (ndarray): The text center region mask. |
|
""" |
|
|
|
assert isinstance(img_size, tuple) |
|
|
|
|
|
h, w = img_size |
|
|
|
center_region_mask = np.zeros((h, w), np.uint8) |
|
|
|
center_region_boxes = [] |
|
for poly in text_polys: |
|
|
|
polygon_points = poly.reshape(-1, 2) |
|
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points) |
|
resampled_top_line, resampled_bot_line = self.resample_sidelines( |
|
top_line, bot_line, self.resample_step) |
|
resampled_bot_line = resampled_bot_line[::-1] |
|
if len(resampled_top_line) != len(resampled_bot_line): |
|
continue |
|
center_line = (resampled_top_line + resampled_bot_line) / 2 |
|
|
|
line_head_shrink_len = norm(resampled_top_line[0] - |
|
resampled_bot_line[0]) / 4.0 |
|
line_tail_shrink_len = norm(resampled_top_line[-1] - |
|
resampled_bot_line[-1]) / 4.0 |
|
head_shrink_num = int(line_head_shrink_len // self.resample_step) |
|
tail_shrink_num = int(line_tail_shrink_len // self.resample_step) |
|
if len(center_line) > head_shrink_num + tail_shrink_num + 2: |
|
center_line = center_line[head_shrink_num:len(center_line) - |
|
tail_shrink_num] |
|
resampled_top_line = resampled_top_line[head_shrink_num:len( |
|
resampled_top_line) - tail_shrink_num] |
|
resampled_bot_line = resampled_bot_line[head_shrink_num:len( |
|
resampled_bot_line) - tail_shrink_num] |
|
|
|
for i in range(0, len(center_line) - 1): |
|
tl = center_line[i] + (resampled_top_line[i] - center_line[i] |
|
) * self.center_region_shrink_ratio |
|
tr = center_line[i + 1] + (resampled_top_line[i + 1] - |
|
center_line[i + 1] |
|
) * self.center_region_shrink_ratio |
|
br = center_line[i + 1] + (resampled_bot_line[i + 1] - |
|
center_line[i + 1] |
|
) * self.center_region_shrink_ratio |
|
bl = center_line[i] + (resampled_bot_line[i] - center_line[i] |
|
) * self.center_region_shrink_ratio |
|
current_center_box = np.vstack([tl, tr, br, |
|
bl]).astype(np.int32) |
|
center_region_boxes.append(current_center_box) |
|
|
|
cv2.fillPoly(center_region_mask, center_region_boxes, 1) |
|
return center_region_mask |
|
|
|
def resample_polygon(self, polygon, n=400): |
|
"""Resample one polygon with n points on its boundary. |
|
|
|
Args: |
|
polygon (list[float]): The input polygon. |
|
n (int): The number of resampled points. |
|
Returns: |
|
resampled_polygon (list[float]): The resampled polygon. |
|
""" |
|
length = [] |
|
|
|
for i in range(len(polygon)): |
|
p1 = polygon[i] |
|
if i == len(polygon) - 1: |
|
p2 = polygon[0] |
|
else: |
|
p2 = polygon[i + 1] |
|
length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5) |
|
|
|
total_length = sum(length) |
|
n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n |
|
n_on_each_line = n_on_each_line.astype(np.int32) |
|
new_polygon = [] |
|
|
|
for i in range(len(polygon)): |
|
num = n_on_each_line[i] |
|
p1 = polygon[i] |
|
if i == len(polygon) - 1: |
|
p2 = polygon[0] |
|
else: |
|
p2 = polygon[i + 1] |
|
|
|
if num == 0: |
|
continue |
|
|
|
dxdy = (p2 - p1) / num |
|
for j in range(num): |
|
point = p1 + dxdy * j |
|
new_polygon.append(point) |
|
|
|
return np.array(new_polygon) |
|
|
|
def normalize_polygon(self, polygon): |
|
"""Normalize one polygon so that its start point is at right most. |
|
|
|
Args: |
|
polygon (list[float]): The origin polygon. |
|
Returns: |
|
new_polygon (lost[float]): The polygon with start point at right. |
|
""" |
|
temp_polygon = polygon - polygon.mean(axis=0) |
|
x = np.abs(temp_polygon[:, 0]) |
|
y = temp_polygon[:, 1] |
|
index_x = np.argsort(x) |
|
index_y = np.argmin(y[index_x[:8]]) |
|
index = index_x[index_y] |
|
new_polygon = np.concatenate([polygon[index:], polygon[:index]]) |
|
return new_polygon |
|
|
|
def poly2fourier(self, polygon, fourier_degree): |
|
"""Perform Fourier transformation to generate Fourier coefficients ck |
|
from polygon. |
|
|
|
Args: |
|
polygon (ndarray): An input polygon. |
|
fourier_degree (int): The maximum Fourier degree K. |
|
Returns: |
|
c (ndarray(complex)): Fourier coefficients. |
|
""" |
|
points = polygon[:, 0] + polygon[:, 1] * 1j |
|
c_fft = fft(points) / len(points) |
|
c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1])) |
|
return c |
|
|
|
def clockwise(self, c, fourier_degree): |
|
"""Make sure the polygon reconstructed from Fourier coefficients c in |
|
the clockwise direction. |
|
|
|
Args: |
|
polygon (list[float]): The origin polygon. |
|
Returns: |
|
new_polygon (lost[float]): The polygon in clockwise point order. |
|
""" |
|
if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]): |
|
return c |
|
elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]): |
|
return c[::-1] |
|
else: |
|
if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]): |
|
return c |
|
else: |
|
return c[::-1] |
|
|
|
def cal_fourier_signature(self, polygon, fourier_degree): |
|
"""Calculate Fourier signature from input polygon. |
|
|
|
Args: |
|
polygon (ndarray): The input polygon. |
|
fourier_degree (int): The maximum Fourier degree K. |
|
Returns: |
|
fourier_signature (ndarray): An array shaped (2k+1, 2) containing |
|
real part and image part of 2k+1 Fourier coefficients. |
|
""" |
|
resampled_polygon = self.resample_polygon(polygon) |
|
resampled_polygon = self.normalize_polygon(resampled_polygon) |
|
|
|
fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree) |
|
fourier_coeff = self.clockwise(fourier_coeff, fourier_degree) |
|
|
|
real_part = np.real(fourier_coeff).reshape((-1, 1)) |
|
image_part = np.imag(fourier_coeff).reshape((-1, 1)) |
|
fourier_signature = np.hstack([real_part, image_part]) |
|
|
|
return fourier_signature |
|
|
|
def generate_fourier_maps(self, img_size, text_polys): |
|
"""Generate Fourier coefficient maps. |
|
|
|
Args: |
|
img_size (tuple): The image size of (height, width). |
|
text_polys (list[list[ndarray]]): The list of text polygons. |
|
|
|
Returns: |
|
fourier_real_map (ndarray): The Fourier coefficient real part maps. |
|
fourier_image_map (ndarray): The Fourier coefficient image part |
|
maps. |
|
""" |
|
|
|
assert isinstance(img_size, tuple) |
|
|
|
h, w = img_size |
|
k = self.fourier_degree |
|
real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32) |
|
imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32) |
|
|
|
for poly in text_polys: |
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
polygon = np.array(poly).reshape((1, -1, 2)) |
|
cv2.fillPoly(mask, polygon.astype(np.int32), 1) |
|
fourier_coeff = self.cal_fourier_signature(polygon[0], k) |
|
for i in range(-k, k + 1): |
|
if i != 0: |
|
real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + ( |
|
1 - mask) * real_map[i + k, :, :] |
|
imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + ( |
|
1 - mask) * imag_map[i + k, :, :] |
|
else: |
|
yx = np.argwhere(mask > 0.5) |
|
k_ind = np.ones((len(yx)), dtype=np.int64) * k |
|
y, x = yx[:, 0], yx[:, 1] |
|
real_map[k_ind, y, x] = fourier_coeff[k, 0] - x |
|
imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y |
|
|
|
return real_map, imag_map |
|
|
|
def generate_text_region_mask(self, img_size, text_polys): |
|
"""Generate text center region mask and geometry attribute maps. |
|
|
|
Args: |
|
img_size (tuple): The image size (height, width). |
|
text_polys (list[list[ndarray]]): The list of text polygons. |
|
|
|
Returns: |
|
text_region_mask (ndarray): The text region mask. |
|
""" |
|
|
|
assert isinstance(img_size, tuple) |
|
|
|
h, w = img_size |
|
text_region_mask = np.zeros((h, w), dtype=np.uint8) |
|
|
|
for poly in text_polys: |
|
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2)) |
|
cv2.fillPoly(text_region_mask, polygon, 1) |
|
|
|
return text_region_mask |
|
|
|
def generate_effective_mask(self, mask_size: tuple, polygons_ignore): |
|
"""Generate effective mask by setting the ineffective regions to 0 and |
|
effective regions to 1. |
|
|
|
Args: |
|
mask_size (tuple): The mask size. |
|
polygons_ignore (list[[ndarray]]: The list of ignored text |
|
polygons. |
|
|
|
Returns: |
|
mask (ndarray): The effective mask of (height, width). |
|
""" |
|
|
|
mask = np.ones(mask_size, dtype=np.uint8) |
|
|
|
for poly in polygons_ignore: |
|
instance = poly.reshape(-1, 2).astype(np.int32).reshape(1, -1, 2) |
|
cv2.fillPoly(mask, instance, 0) |
|
|
|
return mask |
|
|
|
def generate_level_targets(self, img_size, text_polys, ignore_polys): |
|
"""Generate ground truth target on each level. |
|
|
|
Args: |
|
img_size (list[int]): Shape of input image. |
|
text_polys (list[list[ndarray]]): A list of ground truth polygons. |
|
ignore_polys (list[list[ndarray]]): A list of ignored polygons. |
|
Returns: |
|
level_maps (list(ndarray)): A list of ground target on each level. |
|
""" |
|
h, w = img_size |
|
lv_size_divs = self.level_size_divisors |
|
lv_proportion_range = self.level_proportion_range |
|
lv_text_polys = [[] for i in range(len(lv_size_divs))] |
|
lv_ignore_polys = [[] for i in range(len(lv_size_divs))] |
|
level_maps = [] |
|
for poly in text_polys: |
|
polygon = np.array(poly, dtype=np.int).reshape((1, -1, 2)) |
|
_, _, box_w, box_h = cv2.boundingRect(polygon) |
|
proportion = max(box_h, box_w) / (h + 1e-8) |
|
|
|
for ind, proportion_range in enumerate(lv_proportion_range): |
|
if proportion_range[0] < proportion < proportion_range[1]: |
|
lv_text_polys[ind].append(poly / lv_size_divs[ind]) |
|
|
|
for ignore_poly in ignore_polys: |
|
polygon = np.array(ignore_poly, dtype=np.int).reshape((1, -1, 2)) |
|
_, _, box_w, box_h = cv2.boundingRect(polygon) |
|
proportion = max(box_h, box_w) / (h + 1e-8) |
|
|
|
for ind, proportion_range in enumerate(lv_proportion_range): |
|
if proportion_range[0] < proportion < proportion_range[1]: |
|
lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind]) |
|
|
|
for ind, size_divisor in enumerate(lv_size_divs): |
|
current_level_maps = [] |
|
level_img_size = (h // size_divisor, w // size_divisor) |
|
|
|
text_region = self.generate_text_region_mask( |
|
level_img_size, lv_text_polys[ind])[None] |
|
current_level_maps.append(text_region) |
|
|
|
center_region = self.generate_center_region_mask( |
|
level_img_size, lv_text_polys[ind])[None] |
|
current_level_maps.append(center_region) |
|
|
|
effective_mask = self.generate_effective_mask( |
|
level_img_size, lv_ignore_polys[ind])[None] |
|
current_level_maps.append(effective_mask) |
|
|
|
fourier_real_map, fourier_image_maps = self.generate_fourier_maps( |
|
level_img_size, lv_text_polys[ind]) |
|
current_level_maps.append(fourier_real_map) |
|
current_level_maps.append(fourier_image_maps) |
|
|
|
level_maps.append(np.concatenate(current_level_maps)) |
|
|
|
return level_maps |
|
|
|
def generate_targets(self, results): |
|
"""Generate the ground truth targets for FCENet. |
|
|
|
Args: |
|
results (dict): The input result dictionary. |
|
|
|
Returns: |
|
results (dict): The output result dictionary. |
|
""" |
|
|
|
assert isinstance(results, dict) |
|
image = results['image'] |
|
polygons = results['polys'] |
|
ignore_tags = results['ignore_tags'] |
|
h, w, _ = image.shape |
|
|
|
polygon_masks = [] |
|
polygon_masks_ignore = [] |
|
for tag, polygon in zip(ignore_tags, polygons): |
|
if tag is True: |
|
polygon_masks_ignore.append(polygon) |
|
else: |
|
polygon_masks.append(polygon) |
|
|
|
level_maps = self.generate_level_targets((h, w), polygon_masks, |
|
polygon_masks_ignore) |
|
|
|
mapping = { |
|
'p3_maps': level_maps[0], |
|
'p4_maps': level_maps[1], |
|
'p5_maps': level_maps[2] |
|
} |
|
for key, value in mapping.items(): |
|
results[key] = value |
|
|
|
return results |
|
|
|
def __call__(self, results): |
|
results = self.generate_targets(results) |
|
return results |
|
|