Danieldu
add code
a89d9fd
raw
history blame
11.6 kB
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import random
import pyclipper
import paddle
import numpy as np
import Polygon as plg
import scipy.io as scio
from PIL import Image
import paddle.vision.transforms as transforms
class RandomScale():
def __init__(self, short_size=640, **kwargs):
self.short_size = short_size
def scale_aligned(self, img, scale):
oh, ow = img.shape[0:2]
h = int(oh * scale + 0.5)
w = int(ow * scale + 0.5)
if h % 32 != 0:
h = h + (32 - h % 32)
if w % 32 != 0:
w = w + (32 - w % 32)
img = cv2.resize(img, dsize=(w, h))
factor_h = h / oh
factor_w = w / ow
return img, factor_h, factor_w
def __call__(self, data):
img = data['image']
h, w = img.shape[0:2]
random_scale = np.array([0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3])
scale = (np.random.choice(random_scale) * self.short_size) / min(h, w)
img, factor_h, factor_w = self.scale_aligned(img, scale)
data['scale_factor'] = (factor_w, factor_h)
data['image'] = img
return data
class MakeShrink():
def __init__(self, kernel_scale=0.7, **kwargs):
self.kernel_scale = kernel_scale
def dist(self, a, b):
return np.linalg.norm((a - b), ord=2, axis=0)
def perimeter(self, bbox):
peri = 0.0
for i in range(bbox.shape[0]):
peri += self.dist(bbox[i], bbox[(i + 1) % bbox.shape[0]])
return peri
def shrink(self, bboxes, rate, max_shr=20):
rate = rate * rate
shrinked_bboxes = []
for bbox in bboxes:
area = plg.Polygon(bbox).area()
peri = self.perimeter(bbox)
try:
pco = pyclipper.PyclipperOffset()
pco.AddPath(bbox, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
offset = min(
int(area * (1 - rate) / (peri + 0.001) + 0.5), max_shr)
shrinked_bbox = pco.Execute(-offset)
if len(shrinked_bbox) == 0:
shrinked_bboxes.append(bbox)
continue
shrinked_bbox = np.array(shrinked_bbox[0])
if shrinked_bbox.shape[0] <= 2:
shrinked_bboxes.append(bbox)
continue
shrinked_bboxes.append(shrinked_bbox)
except Exception as e:
shrinked_bboxes.append(bbox)
return shrinked_bboxes
def __call__(self, data):
img = data['image']
bboxes = data['polys']
words = data['texts']
scale_factor = data['scale_factor']
gt_instance = np.zeros(img.shape[0:2], dtype='uint8') # h,w
training_mask = np.ones(img.shape[0:2], dtype='uint8')
training_mask_distance = np.ones(img.shape[0:2], dtype='uint8')
for i in range(len(bboxes)):
bboxes[i] = np.reshape(bboxes[i] * (
[scale_factor[0], scale_factor[1]] * (bboxes[i].shape[0] // 2)),
(bboxes[i].shape[0] // 2, 2)).astype('int32')
for i in range(len(bboxes)):
#different value for different bbox
cv2.drawContours(gt_instance, [bboxes[i]], -1, i + 1, -1)
# set training mask to 0
cv2.drawContours(training_mask, [bboxes[i]], -1, 0, -1)
# for not accurate annotation, use training_mask_distance
if words[i] == '###' or words[i] == '???':
cv2.drawContours(training_mask_distance, [bboxes[i]], -1, 0, -1)
# make shrink
gt_kernel_instance = np.zeros(img.shape[0:2], dtype='uint8')
kernel_bboxes = self.shrink(bboxes, self.kernel_scale)
for i in range(len(bboxes)):
cv2.drawContours(gt_kernel_instance, [kernel_bboxes[i]], -1, i + 1,
-1)
# for training mask, kernel and background= 1, box region=0
if words[i] != '###' and words[i] != '???':
cv2.drawContours(training_mask, [kernel_bboxes[i]], -1, 1, -1)
gt_kernel = gt_kernel_instance.copy()
# for gt_kernel, kernel = 1
gt_kernel[gt_kernel > 0] = 1
# shrink 2 times
tmp1 = gt_kernel_instance.copy()
erode_kernel = np.ones((3, 3), np.uint8)
tmp1 = cv2.erode(tmp1, erode_kernel, iterations=1)
tmp2 = tmp1.copy()
tmp2 = cv2.erode(tmp2, erode_kernel, iterations=1)
# compute text region
gt_kernel_inner = tmp1 - tmp2
# gt_instance: text instance, bg=0, diff word use diff value
# training_mask: text instance mask, word=0,kernel and bg=1
# gt_kernel_instance: text kernel instance, bg=0, diff word use diff value
# gt_kernel: text_kernel, bg=0,diff word use same value
# gt_kernel_inner: text kernel reference
# training_mask_distance: word without anno = 0, else 1
data['image'] = [
img, gt_instance, training_mask, gt_kernel_instance, gt_kernel,
gt_kernel_inner, training_mask_distance
]
return data
class GroupRandomHorizontalFlip():
def __init__(self, p=0.5, **kwargs):
self.p = p
def __call__(self, data):
imgs = data['image']
if random.random() < self.p:
for i in range(len(imgs)):
imgs[i] = np.flip(imgs[i], axis=1).copy()
data['image'] = imgs
return data
class GroupRandomRotate():
def __init__(self, **kwargs):
pass
def __call__(self, data):
imgs = data['image']
max_angle = 10
angle = random.random() * 2 * max_angle - max_angle
for i in range(len(imgs)):
img = imgs[i]
w, h = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
img_rotation = cv2.warpAffine(
img, rotation_matrix, (h, w), flags=cv2.INTER_NEAREST)
imgs[i] = img_rotation
data['image'] = imgs
return data
class GroupRandomCropPadding():
def __init__(self, target_size=(640, 640), **kwargs):
self.target_size = target_size
def __call__(self, data):
imgs = data['image']
h, w = imgs[0].shape[0:2]
t_w, t_h = self.target_size
p_w, p_h = self.target_size
if w == t_w and h == t_h:
return data
t_h = t_h if t_h < h else h
t_w = t_w if t_w < w else w
if random.random() > 3.0 / 8.0 and np.max(imgs[1]) > 0:
# make sure to crop the text region
tl = np.min(np.where(imgs[1] > 0), axis=1) - (t_h, t_w)
tl[tl < 0] = 0
br = np.max(np.where(imgs[1] > 0), axis=1) - (t_h, t_w)
br[br < 0] = 0
br[0] = min(br[0], h - t_h)
br[1] = min(br[1], w - t_w)
i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
else:
i = random.randint(0, h - t_h) if h - t_h > 0 else 0
j = random.randint(0, w - t_w) if w - t_w > 0 else 0
n_imgs = []
for idx in range(len(imgs)):
if len(imgs[idx].shape) == 3:
s3_length = int(imgs[idx].shape[-1])
img = imgs[idx][i:i + t_h, j:j + t_w, :]
img_p = cv2.copyMakeBorder(
img,
0,
p_h - t_h,
0,
p_w - t_w,
borderType=cv2.BORDER_CONSTANT,
value=tuple(0 for i in range(s3_length)))
else:
img = imgs[idx][i:i + t_h, j:j + t_w]
img_p = cv2.copyMakeBorder(
img,
0,
p_h - t_h,
0,
p_w - t_w,
borderType=cv2.BORDER_CONSTANT,
value=(0, ))
n_imgs.append(img_p)
data['image'] = n_imgs
return data
class MakeCentripetalShift():
def __init__(self, **kwargs):
pass
def jaccard(self, As, Bs):
A = As.shape[0] # small
B = Bs.shape[0] # large
dis = np.sqrt(
np.sum((As[:, np.newaxis, :].repeat(
B, axis=1) - Bs[np.newaxis, :, :].repeat(
A, axis=0))**2,
axis=-1))
ind = np.argmin(dis, axis=-1)
return ind
def __call__(self, data):
imgs = data['image']
img, gt_instance, training_mask, gt_kernel_instance, gt_kernel, gt_kernel_inner, training_mask_distance = \
imgs[0], imgs[1], imgs[2], imgs[3], imgs[4], imgs[5], imgs[6]
max_instance = np.max(gt_instance) # num bbox
# make centripetal shift
gt_distance = np.zeros((2, *img.shape[0:2]), dtype=np.float32)
for i in range(1, max_instance + 1):
# kernel_reference
ind = (gt_kernel_inner == i)
if np.sum(ind) == 0:
training_mask[gt_instance == i] = 0
training_mask_distance[gt_instance == i] = 0
continue
kpoints = np.array(np.where(ind)).transpose(
(1, 0))[:, ::-1].astype('float32')
ind = (gt_instance == i) * (gt_kernel_instance == 0)
if np.sum(ind) == 0:
continue
pixels = np.where(ind)
points = np.array(pixels).transpose(
(1, 0))[:, ::-1].astype('float32')
bbox_ind = self.jaccard(points, kpoints)
offset_gt = kpoints[bbox_ind] - points
gt_distance[:, pixels[0], pixels[1]] = offset_gt.T * 0.1
img = Image.fromarray(img)
img = img.convert('RGB')
data["image"] = img
data["gt_kernel"] = gt_kernel.astype("int64")
data["training_mask"] = training_mask.astype("int64")
data["gt_instance"] = gt_instance.astype("int64")
data["gt_kernel_instance"] = gt_kernel_instance.astype("int64")
data["training_mask_distance"] = training_mask_distance.astype("int64")
data["gt_distance"] = gt_distance.astype("float32")
return data
class ScaleAlignedShort():
def __init__(self, short_size=640, **kwargs):
self.short_size = short_size
def __call__(self, data):
img = data['image']
org_img_shape = img.shape
h, w = img.shape[0:2]
scale = self.short_size * 1.0 / min(h, w)
h = int(h * scale + 0.5)
w = int(w * scale + 0.5)
if h % 32 != 0:
h = h + (32 - h % 32)
if w % 32 != 0:
w = w + (32 - w % 32)
img = cv2.resize(img, dsize=(w, h))
new_img_shape = img.shape
img_shape = np.array(org_img_shape + new_img_shape)
data['shape'] = img_shape
data['image'] = img
return data