|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import sys |
|
import pickle |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) |
|
|
|
from ppocr.data import build_dataloader |
|
from ppocr.modeling.architectures import build_model |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.save_load import load_model |
|
from ppocr.utils.utility import print_dict |
|
import tools.program as program |
|
|
|
|
|
def main(): |
|
global_config = config['Global'] |
|
|
|
config['Eval']['dataset']['name'] = config['Train']['dataset']['name'] |
|
config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][ |
|
'data_dir'] |
|
config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][ |
|
'label_file_list'] |
|
eval_dataloader = build_dataloader(config, 'Eval', device, logger) |
|
|
|
|
|
post_process_class = build_post_process(config['PostProcess'], |
|
global_config) |
|
|
|
|
|
|
|
if hasattr(post_process_class, 'character'): |
|
char_num = len(getattr(post_process_class, 'character')) |
|
config['Architecture']["Head"]['out_channels'] = char_num |
|
|
|
|
|
config['Architecture']["Head"]["return_feats"] = True |
|
|
|
model = build_model(config['Architecture']) |
|
|
|
best_model_dict = load_model(config, model) |
|
if len(best_model_dict): |
|
logger.info('metric in ckpt ***************') |
|
for k, v in best_model_dict.items(): |
|
logger.info('{}:{}'.format(k, v)) |
|
|
|
|
|
char_center = program.get_center(model, eval_dataloader, post_process_class) |
|
|
|
|
|
with open("train_center.pkl", 'wb') as f: |
|
pickle.dump(char_center, f) |
|
return |
|
|
|
|
|
if __name__ == '__main__': |
|
config, device, logger, vdl_writer = program.preprocess() |
|
main() |
|
|