|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
from scipy.special import softmax |
|
|
|
|
|
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): |
|
""" |
|
Args: |
|
box_scores (N, 5): boxes in corner-form and probabilities. |
|
iou_threshold: intersection over union threshold. |
|
top_k: keep top_k results. If k <= 0, keep all the results. |
|
candidate_size: only consider the candidates with the highest scores. |
|
Returns: |
|
picked: a list of indexes of the kept boxes |
|
""" |
|
scores = box_scores[:, -1] |
|
boxes = box_scores[:, :-1] |
|
picked = [] |
|
indexes = np.argsort(scores) |
|
indexes = indexes[-candidate_size:] |
|
while len(indexes) > 0: |
|
current = indexes[-1] |
|
picked.append(current) |
|
if 0 < top_k == len(picked) or len(indexes) == 1: |
|
break |
|
current_box = boxes[current, :] |
|
indexes = indexes[:-1] |
|
rest_boxes = boxes[indexes, :] |
|
iou = iou_of( |
|
rest_boxes, |
|
np.expand_dims( |
|
current_box, axis=0), ) |
|
indexes = indexes[iou <= iou_threshold] |
|
|
|
return box_scores[picked, :] |
|
|
|
|
|
def iou_of(boxes0, boxes1, eps=1e-5): |
|
"""Return intersection-over-union (Jaccard index) of boxes. |
|
Args: |
|
boxes0 (N, 4): ground truth boxes. |
|
boxes1 (N or 1, 4): predicted boxes. |
|
eps: a small number to avoid 0 as denominator. |
|
Returns: |
|
iou (N): IoU values. |
|
""" |
|
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) |
|
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) |
|
|
|
overlap_area = area_of(overlap_left_top, overlap_right_bottom) |
|
area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) |
|
area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) |
|
return overlap_area / (area0 + area1 - overlap_area + eps) |
|
|
|
|
|
def area_of(left_top, right_bottom): |
|
"""Compute the areas of rectangles given two corners. |
|
Args: |
|
left_top (N, 2): left top corner. |
|
right_bottom (N, 2): right bottom corner. |
|
Returns: |
|
area (N): return the area. |
|
""" |
|
hw = np.clip(right_bottom - left_top, 0.0, None) |
|
return hw[..., 0] * hw[..., 1] |
|
|
|
|
|
class PicoDetPostProcess(object): |
|
""" |
|
Args: |
|
input_shape (int): network input image size |
|
ori_shape (int): ori image shape of before padding |
|
scale_factor (float): scale factor of ori image |
|
enable_mkldnn (bool): whether to open MKLDNN |
|
""" |
|
|
|
def __init__(self, |
|
layout_dict_path, |
|
strides=[8, 16, 32, 64], |
|
score_threshold=0.4, |
|
nms_threshold=0.5, |
|
nms_top_k=1000, |
|
keep_top_k=100): |
|
self.labels = self.load_layout_dict(layout_dict_path) |
|
self.strides = strides |
|
self.score_threshold = score_threshold |
|
self.nms_threshold = nms_threshold |
|
self.nms_top_k = nms_top_k |
|
self.keep_top_k = keep_top_k |
|
|
|
def load_layout_dict(self, layout_dict_path): |
|
print(layout_dict_path) |
|
with open(layout_dict_path, 'r', encoding='utf-8') as fp: |
|
labels = fp.readlines() |
|
return [label.strip('\n') for label in labels] |
|
|
|
def warp_boxes(self, boxes, ori_shape): |
|
"""Apply transform to boxes |
|
""" |
|
width, height = ori_shape[1], ori_shape[0] |
|
n = len(boxes) |
|
if n: |
|
|
|
xy = np.ones((n * 4, 3)) |
|
xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( |
|
n * 4, 2) |
|
|
|
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) |
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
xy = np.concatenate( |
|
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
|
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) |
|
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) |
|
return xy.astype(np.float32) |
|
else: |
|
return boxes |
|
|
|
def img_info(self, ori_img, img): |
|
origin_shape = ori_img.shape |
|
resize_shape = img.shape |
|
im_scale_y = resize_shape[2] / float(origin_shape[0]) |
|
im_scale_x = resize_shape[3] / float(origin_shape[1]) |
|
scale_factor = np.array([im_scale_y, im_scale_x], dtype=np.float32) |
|
img_shape = np.array(img.shape[2:], dtype=np.float32) |
|
|
|
input_shape = np.array(img).astype('float32').shape[2:] |
|
ori_shape = np.array((img_shape, )).astype('float32') |
|
scale_factor = np.array((scale_factor, )).astype('float32') |
|
return ori_shape, input_shape, scale_factor |
|
|
|
def __call__(self, ori_img, img, preds): |
|
scores, raw_boxes = preds['boxes'], preds['boxes_num'] |
|
batch_size = raw_boxes[0].shape[0] |
|
reg_max = int(raw_boxes[0].shape[-1] / 4 - 1) |
|
out_boxes_num = [] |
|
out_boxes_list = [] |
|
results = [] |
|
ori_shape, input_shape, scale_factor = self.img_info(ori_img, img) |
|
|
|
for batch_id in range(batch_size): |
|
|
|
decode_boxes = [] |
|
select_scores = [] |
|
for stride, box_distribute, score in zip(self.strides, raw_boxes, |
|
scores): |
|
box_distribute = box_distribute[batch_id] |
|
score = score[batch_id] |
|
|
|
fm_h = input_shape[0] / stride |
|
fm_w = input_shape[1] / stride |
|
h_range = np.arange(fm_h) |
|
w_range = np.arange(fm_w) |
|
ww, hh = np.meshgrid(w_range, h_range) |
|
ct_row = (hh.flatten() + 0.5) * stride |
|
ct_col = (ww.flatten() + 0.5) * stride |
|
center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1) |
|
|
|
|
|
reg_range = np.arange(reg_max + 1) |
|
box_distance = box_distribute.reshape((-1, reg_max + 1)) |
|
box_distance = softmax(box_distance, axis=1) |
|
box_distance = box_distance * np.expand_dims(reg_range, axis=0) |
|
box_distance = np.sum(box_distance, axis=1).reshape((-1, 4)) |
|
box_distance = box_distance * stride |
|
|
|
|
|
topk_idx = np.argsort(score.max(axis=1))[::-1] |
|
topk_idx = topk_idx[:self.nms_top_k] |
|
center = center[topk_idx] |
|
score = score[topk_idx] |
|
box_distance = box_distance[topk_idx] |
|
|
|
|
|
decode_box = center + [-1, -1, 1, 1] * box_distance |
|
|
|
select_scores.append(score) |
|
decode_boxes.append(decode_box) |
|
|
|
|
|
bboxes = np.concatenate(decode_boxes, axis=0) |
|
confidences = np.concatenate(select_scores, axis=0) |
|
picked_box_probs = [] |
|
picked_labels = [] |
|
for class_index in range(0, confidences.shape[1]): |
|
probs = confidences[:, class_index] |
|
mask = probs > self.score_threshold |
|
probs = probs[mask] |
|
if probs.shape[0] == 0: |
|
continue |
|
subset_boxes = bboxes[mask, :] |
|
box_probs = np.concatenate( |
|
[subset_boxes, probs.reshape(-1, 1)], axis=1) |
|
box_probs = hard_nms( |
|
box_probs, |
|
iou_threshold=self.nms_threshold, |
|
top_k=self.keep_top_k, ) |
|
picked_box_probs.append(box_probs) |
|
picked_labels.extend([class_index] * box_probs.shape[0]) |
|
|
|
if len(picked_box_probs) == 0: |
|
out_boxes_list.append(np.empty((0, 4))) |
|
out_boxes_num.append(0) |
|
|
|
else: |
|
picked_box_probs = np.concatenate(picked_box_probs) |
|
|
|
|
|
picked_box_probs[:, :4] = self.warp_boxes( |
|
picked_box_probs[:, :4], ori_shape[batch_id]) |
|
im_scale = np.concatenate([ |
|
scale_factor[batch_id][::-1], scale_factor[batch_id][::-1] |
|
]) |
|
picked_box_probs[:, :4] /= im_scale |
|
|
|
out_boxes_list.append( |
|
np.concatenate( |
|
[ |
|
np.expand_dims( |
|
np.array(picked_labels), |
|
axis=-1), np.expand_dims( |
|
picked_box_probs[:, 4], axis=-1), |
|
picked_box_probs[:, :4] |
|
], |
|
axis=1)) |
|
out_boxes_num.append(len(picked_labels)) |
|
|
|
out_boxes_list = np.concatenate(out_boxes_list, axis=0) |
|
out_boxes_num = np.asarray(out_boxes_num).astype(np.int32) |
|
|
|
for dt in out_boxes_list: |
|
clsid, bbox, score = int(dt[0]), dt[2:], dt[1] |
|
label = self.labels[clsid] |
|
result = {'bbox': bbox, 'label': label} |
|
results.append(result) |
|
return results |
|
|