|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/FudanVI/FudanOCR/blob/main/text-gestalt/model/tsrn.py |
|
""" |
|
|
|
import math |
|
import paddle |
|
import paddle.nn.functional as F |
|
from paddle import nn |
|
from collections import OrderedDict |
|
import sys |
|
import numpy as np |
|
import warnings |
|
import math, copy |
|
import cv2 |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
from .tps_spatial_transformer import TPSSpatialTransformer |
|
from .stn import STN as STN_model |
|
from ppocr.modeling.heads.sr_rensnet_transformer import Transformer |
|
|
|
|
|
class TSRN(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
scale_factor=2, |
|
width=128, |
|
height=32, |
|
STN=False, |
|
srb_nums=5, |
|
mask=False, |
|
hidden_units=32, |
|
infer_mode=False, |
|
**kwargs): |
|
super(TSRN, self).__init__() |
|
in_planes = 3 |
|
if mask: |
|
in_planes = 4 |
|
assert math.log(scale_factor, 2) % 1 == 0 |
|
upsample_block_num = int(math.log(scale_factor, 2)) |
|
self.block1 = nn.Sequential( |
|
nn.Conv2D( |
|
in_planes, 2 * hidden_units, kernel_size=9, padding=4), |
|
nn.PReLU()) |
|
self.srb_nums = srb_nums |
|
for i in range(srb_nums): |
|
setattr(self, 'block%d' % (i + 2), |
|
RecurrentResidualBlock(2 * hidden_units)) |
|
|
|
setattr( |
|
self, |
|
'block%d' % (srb_nums + 2), |
|
nn.Sequential( |
|
nn.Conv2D( |
|
2 * hidden_units, |
|
2 * hidden_units, |
|
kernel_size=3, |
|
padding=1), |
|
nn.BatchNorm2D(2 * hidden_units))) |
|
|
|
block_ = [ |
|
UpsampleBLock(2 * hidden_units, 2) |
|
for _ in range(upsample_block_num) |
|
] |
|
block_.append( |
|
nn.Conv2D( |
|
2 * hidden_units, in_planes, kernel_size=9, padding=4)) |
|
setattr(self, 'block%d' % (srb_nums + 3), nn.Sequential(*block_)) |
|
self.tps_inputsize = [height // scale_factor, width // scale_factor] |
|
tps_outputsize = [height // scale_factor, width // scale_factor] |
|
num_control_points = 20 |
|
tps_margins = [0.05, 0.05] |
|
self.stn = STN |
|
if self.stn: |
|
self.tps = TPSSpatialTransformer( |
|
output_image_size=tuple(tps_outputsize), |
|
num_control_points=num_control_points, |
|
margins=tuple(tps_margins)) |
|
|
|
self.stn_head = STN_model( |
|
in_channels=in_planes, |
|
num_ctrlpoints=num_control_points, |
|
activation='none') |
|
self.out_channels = in_channels |
|
|
|
self.r34_transformer = Transformer() |
|
for param in self.r34_transformer.parameters(): |
|
param.trainable = False |
|
self.infer_mode = infer_mode |
|
|
|
def forward(self, x): |
|
output = {} |
|
if self.infer_mode: |
|
output["lr_img"] = x |
|
y = x |
|
else: |
|
output["lr_img"] = x[0] |
|
output["hr_img"] = x[1] |
|
y = x[0] |
|
if self.stn and self.training: |
|
_, ctrl_points_x = self.stn_head(y) |
|
y, _ = self.tps(y, ctrl_points_x) |
|
block = {'1': self.block1(y)} |
|
for i in range(self.srb_nums + 1): |
|
block[str(i + 2)] = getattr(self, |
|
'block%d' % (i + 2))(block[str(i + 1)]) |
|
|
|
block[str(self.srb_nums + 3)] = getattr(self, 'block%d' % (self.srb_nums + 3)) \ |
|
((block['1'] + block[str(self.srb_nums + 2)])) |
|
|
|
sr_img = paddle.tanh(block[str(self.srb_nums + 3)]) |
|
|
|
output["sr_img"] = sr_img |
|
|
|
if self.training: |
|
hr_img = x[1] |
|
length = x[2] |
|
input_tensor = x[3] |
|
|
|
|
|
sr_pred, word_attention_map_pred, _ = self.r34_transformer( |
|
sr_img, length, input_tensor) |
|
|
|
hr_pred, word_attention_map_gt, _ = self.r34_transformer( |
|
hr_img, length, input_tensor) |
|
|
|
output["hr_img"] = hr_img |
|
output["hr_pred"] = hr_pred |
|
output["word_attention_map_gt"] = word_attention_map_gt |
|
output["sr_pred"] = sr_pred |
|
output["word_attention_map_pred"] = word_attention_map_pred |
|
|
|
return output |
|
|
|
|
|
class RecurrentResidualBlock(nn.Layer): |
|
def __init__(self, channels): |
|
super(RecurrentResidualBlock, self).__init__() |
|
self.conv1 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) |
|
self.bn1 = nn.BatchNorm2D(channels) |
|
self.gru1 = GruBlock(channels, channels) |
|
self.prelu = mish() |
|
self.conv2 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) |
|
self.bn2 = nn.BatchNorm2D(channels) |
|
self.gru2 = GruBlock(channels, channels) |
|
|
|
def forward(self, x): |
|
residual = self.conv1(x) |
|
residual = self.bn1(residual) |
|
residual = self.prelu(residual) |
|
residual = self.conv2(residual) |
|
residual = self.bn2(residual) |
|
residual = self.gru1(residual.transpose([0, 1, 3, 2])).transpose( |
|
[0, 1, 3, 2]) |
|
|
|
return self.gru2(x + residual) |
|
|
|
|
|
class UpsampleBLock(nn.Layer): |
|
def __init__(self, in_channels, up_scale): |
|
super(UpsampleBLock, self).__init__() |
|
self.conv = nn.Conv2D( |
|
in_channels, in_channels * up_scale**2, kernel_size=3, padding=1) |
|
|
|
self.pixel_shuffle = nn.PixelShuffle(up_scale) |
|
self.prelu = mish() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.pixel_shuffle(x) |
|
x = self.prelu(x) |
|
return x |
|
|
|
|
|
class mish(nn.Layer): |
|
def __init__(self, ): |
|
super(mish, self).__init__() |
|
self.activated = True |
|
|
|
def forward(self, x): |
|
if self.activated: |
|
x = x * (paddle.tanh(F.softplus(x))) |
|
return x |
|
|
|
|
|
class GruBlock(nn.Layer): |
|
def __init__(self, in_channels, out_channels): |
|
super(GruBlock, self).__init__() |
|
assert out_channels % 2 == 0 |
|
self.conv1 = nn.Conv2D( |
|
in_channels, out_channels, kernel_size=1, padding=0) |
|
self.gru = nn.GRU(out_channels, |
|
out_channels // 2, |
|
direction='bidirectional') |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv1(x) |
|
x = x.transpose([0, 2, 3, 1]) |
|
batch_size, w, h, c = x.shape |
|
x = x.reshape([-1, h, c]) |
|
x, _ = self.gru(x) |
|
x = x.reshape([-1, w, h, c]) |
|
x = x.transpose([0, 3, 1, 2]) |
|
return x |
|
|