|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
from paddle.vision.ops import DeformConv2D |
|
from paddle.regularizer import L2Decay |
|
from paddle.nn.initializer import Normal, Constant, XavierUniform |
|
|
|
__all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"] |
|
|
|
|
|
class DeformableConvV2(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
weight_attr=None, |
|
bias_attr=None, |
|
lr_scale=1, |
|
regularizer=None, |
|
skip_quant=False, |
|
dcn_bias_regularizer=L2Decay(0.), |
|
dcn_bias_lr_scale=2.): |
|
super(DeformableConvV2, self).__init__() |
|
self.offset_channel = 2 * kernel_size**2 * groups |
|
self.mask_channel = kernel_size**2 * groups |
|
|
|
if bias_attr: |
|
|
|
dcn_bias_attr = ParamAttr( |
|
initializer=Constant(value=0), |
|
regularizer=dcn_bias_regularizer, |
|
learning_rate=dcn_bias_lr_scale) |
|
else: |
|
|
|
dcn_bias_attr = False |
|
self.conv_dcn = DeformConv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2 * dilation, |
|
dilation=dilation, |
|
deformable_groups=groups, |
|
weight_attr=weight_attr, |
|
bias_attr=dcn_bias_attr) |
|
|
|
if lr_scale == 1 and regularizer is None: |
|
offset_bias_attr = ParamAttr(initializer=Constant(0.)) |
|
else: |
|
offset_bias_attr = ParamAttr( |
|
initializer=Constant(0.), |
|
learning_rate=lr_scale, |
|
regularizer=regularizer) |
|
self.conv_offset = nn.Conv2D( |
|
in_channels, |
|
groups * 3 * kernel_size**2, |
|
kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
weight_attr=ParamAttr(initializer=Constant(0.0)), |
|
bias_attr=offset_bias_attr) |
|
if skip_quant: |
|
self.conv_offset.skip_quant = True |
|
|
|
def forward(self, x): |
|
offset_mask = self.conv_offset(x) |
|
offset, mask = paddle.split( |
|
offset_mask, |
|
num_or_sections=[self.offset_channel, self.mask_channel], |
|
axis=1) |
|
mask = F.sigmoid(mask) |
|
y = self.conv_dcn(x, offset, mask=mask) |
|
return y |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
groups=1, |
|
dcn_groups=1, |
|
is_vd_mode=False, |
|
act=None, |
|
is_dcn=False): |
|
super(ConvBNLayer, self).__init__() |
|
|
|
self.is_vd_mode = is_vd_mode |
|
self._pool2d_avg = nn.AvgPool2D( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
if not is_dcn: |
|
self._conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
bias_attr=False) |
|
else: |
|
self._conv = DeformableConvV2( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=dcn_groups, |
|
bias_attr=False) |
|
self._batch_norm = nn.BatchNorm(out_channels, act=act) |
|
|
|
def forward(self, inputs): |
|
if self.is_vd_mode: |
|
inputs = self._pool2d_avg(inputs) |
|
y = self._conv(inputs) |
|
y = self._batch_norm(y) |
|
return y |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
shortcut=True, |
|
if_first=False, |
|
is_dcn=False, ): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
self.conv0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
act='relu') |
|
self.conv1 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
act='relu', |
|
is_dcn=is_dcn, |
|
dcn_groups=2) |
|
self.conv2 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels * 4, |
|
kernel_size=1, |
|
act=None) |
|
|
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels * 4, |
|
kernel_size=1, |
|
stride=1, |
|
is_vd_mode=False if if_first else True) |
|
|
|
self.shortcut = shortcut |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
conv1 = self.conv1(y) |
|
conv2 = self.conv2(conv1) |
|
|
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
y = paddle.add(x=short, y=conv2) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
shortcut=True, |
|
if_first=False, ): |
|
super(BasicBlock, self).__init__() |
|
self.stride = stride |
|
self.conv0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
act='relu') |
|
self.conv1 = ConvBNLayer( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
act=None) |
|
|
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
is_vd_mode=False if if_first else True) |
|
|
|
self.shortcut = shortcut |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
conv1 = self.conv1(y) |
|
|
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
y = paddle.add(x=short, y=conv1) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class ResNet_vd(nn.Layer): |
|
def __init__(self, |
|
in_channels=3, |
|
layers=50, |
|
dcn_stage=None, |
|
out_indices=None, |
|
**kwargs): |
|
super(ResNet_vd, self).__init__() |
|
|
|
self.layers = layers |
|
supported_layers = [18, 34, 50, 101, 152, 200] |
|
assert layers in supported_layers, \ |
|
"supported layers are {} but input layer is {}".format( |
|
supported_layers, layers) |
|
|
|
if layers == 18: |
|
depth = [2, 2, 2, 2] |
|
elif layers == 34 or layers == 50: |
|
depth = [3, 4, 6, 3] |
|
elif layers == 101: |
|
depth = [3, 4, 23, 3] |
|
elif layers == 152: |
|
depth = [3, 8, 36, 3] |
|
elif layers == 200: |
|
depth = [3, 12, 48, 3] |
|
num_channels = [64, 256, 512, |
|
1024] if layers >= 50 else [64, 64, 128, 256] |
|
num_filters = [64, 128, 256, 512] |
|
|
|
self.dcn_stage = dcn_stage if dcn_stage is not None else [ |
|
False, False, False, False |
|
] |
|
self.out_indices = out_indices if out_indices is not None else [ |
|
0, 1, 2, 3 |
|
] |
|
|
|
self.conv1_1 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=32, |
|
kernel_size=3, |
|
stride=2, |
|
act='relu') |
|
self.conv1_2 = ConvBNLayer( |
|
in_channels=32, |
|
out_channels=32, |
|
kernel_size=3, |
|
stride=1, |
|
act='relu') |
|
self.conv1_3 = ConvBNLayer( |
|
in_channels=32, |
|
out_channels=64, |
|
kernel_size=3, |
|
stride=1, |
|
act='relu') |
|
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) |
|
|
|
self.stages = [] |
|
self.out_channels = [] |
|
if layers >= 50: |
|
for block in range(len(depth)): |
|
block_list = [] |
|
shortcut = False |
|
is_dcn = self.dcn_stage[block] |
|
for i in range(depth[block]): |
|
bottleneck_block = self.add_sublayer( |
|
'bb_%d_%d' % (block, i), |
|
BottleneckBlock( |
|
in_channels=num_channels[block] |
|
if i == 0 else num_filters[block] * 4, |
|
out_channels=num_filters[block], |
|
stride=2 if i == 0 and block != 0 else 1, |
|
shortcut=shortcut, |
|
if_first=block == i == 0, |
|
is_dcn=is_dcn)) |
|
shortcut = True |
|
block_list.append(bottleneck_block) |
|
if block in self.out_indices: |
|
self.out_channels.append(num_filters[block] * 4) |
|
self.stages.append(nn.Sequential(*block_list)) |
|
else: |
|
for block in range(len(depth)): |
|
block_list = [] |
|
shortcut = False |
|
for i in range(depth[block]): |
|
basic_block = self.add_sublayer( |
|
'bb_%d_%d' % (block, i), |
|
BasicBlock( |
|
in_channels=num_channels[block] |
|
if i == 0 else num_filters[block], |
|
out_channels=num_filters[block], |
|
stride=2 if i == 0 and block != 0 else 1, |
|
shortcut=shortcut, |
|
if_first=block == i == 0)) |
|
shortcut = True |
|
block_list.append(basic_block) |
|
if block in self.out_indices: |
|
self.out_channels.append(num_filters[block]) |
|
self.stages.append(nn.Sequential(*block_list)) |
|
|
|
def forward(self, inputs): |
|
y = self.conv1_1(inputs) |
|
y = self.conv1_2(y) |
|
y = self.conv1_3(y) |
|
y = self.pool2d_max(y) |
|
out = [] |
|
for i, block in enumerate(self.stages): |
|
y = block(y) |
|
if i in self.out_indices: |
|
out.append(y) |
|
return out |
|
|