|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from __future__ import unicode_literals |
|
|
|
from PIL import Image, ImageEnhance, ImageOps |
|
import numpy as np |
|
import random |
|
import six |
|
|
|
|
|
class RawRandAugment(object): |
|
def __init__(self, |
|
num_layers=2, |
|
magnitude=5, |
|
fillcolor=(128, 128, 128), |
|
**kwargs): |
|
self.num_layers = num_layers |
|
self.magnitude = magnitude |
|
self.max_level = 10 |
|
|
|
abso_level = self.magnitude / self.max_level |
|
self.level_map = { |
|
"shearX": 0.3 * abso_level, |
|
"shearY": 0.3 * abso_level, |
|
"translateX": 150.0 / 331 * abso_level, |
|
"translateY": 150.0 / 331 * abso_level, |
|
"rotate": 30 * abso_level, |
|
"color": 0.9 * abso_level, |
|
"posterize": int(4.0 * abso_level), |
|
"solarize": 256.0 * abso_level, |
|
"contrast": 0.9 * abso_level, |
|
"sharpness": 0.9 * abso_level, |
|
"brightness": 0.9 * abso_level, |
|
"autocontrast": 0, |
|
"equalize": 0, |
|
"invert": 0 |
|
} |
|
|
|
|
|
|
|
def rotate_with_fill(img, magnitude): |
|
rot = img.convert("RGBA").rotate(magnitude) |
|
return Image.composite(rot, |
|
Image.new("RGBA", rot.size, (128, ) * 4), |
|
rot).convert(img.mode) |
|
|
|
rnd_ch_op = random.choice |
|
|
|
self.func = { |
|
"shearX": lambda img, magnitude: img.transform( |
|
img.size, |
|
Image.AFFINE, |
|
(1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0), |
|
Image.BICUBIC, |
|
fillcolor=fillcolor), |
|
"shearY": lambda img, magnitude: img.transform( |
|
img.size, |
|
Image.AFFINE, |
|
(1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0), |
|
Image.BICUBIC, |
|
fillcolor=fillcolor), |
|
"translateX": lambda img, magnitude: img.transform( |
|
img.size, |
|
Image.AFFINE, |
|
(1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0), |
|
fillcolor=fillcolor), |
|
"translateY": lambda img, magnitude: img.transform( |
|
img.size, |
|
Image.AFFINE, |
|
(1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])), |
|
fillcolor=fillcolor), |
|
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude), |
|
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance( |
|
1 + magnitude * rnd_ch_op([-1, 1])), |
|
"posterize": lambda img, magnitude: |
|
ImageOps.posterize(img, magnitude), |
|
"solarize": lambda img, magnitude: |
|
ImageOps.solarize(img, magnitude), |
|
"contrast": lambda img, magnitude: |
|
ImageEnhance.Contrast(img).enhance( |
|
1 + magnitude * rnd_ch_op([-1, 1])), |
|
"sharpness": lambda img, magnitude: |
|
ImageEnhance.Sharpness(img).enhance( |
|
1 + magnitude * rnd_ch_op([-1, 1])), |
|
"brightness": lambda img, magnitude: |
|
ImageEnhance.Brightness(img).enhance( |
|
1 + magnitude * rnd_ch_op([-1, 1])), |
|
"autocontrast": lambda img, magnitude: |
|
ImageOps.autocontrast(img), |
|
"equalize": lambda img, magnitude: ImageOps.equalize(img), |
|
"invert": lambda img, magnitude: ImageOps.invert(img) |
|
} |
|
|
|
def __call__(self, img): |
|
avaiable_op_names = list(self.level_map.keys()) |
|
for layer_num in range(self.num_layers): |
|
op_name = np.random.choice(avaiable_op_names) |
|
img = self.func[op_name](img, self.level_map[op_name]) |
|
return img |
|
|
|
|
|
class RandAugment(RawRandAugment): |
|
""" RandAugment wrapper to auto fit different img types """ |
|
|
|
def __init__(self, prob=0.5, *args, **kwargs): |
|
self.prob = prob |
|
if six.PY2: |
|
super(RandAugment, self).__init__(*args, **kwargs) |
|
else: |
|
super().__init__(*args, **kwargs) |
|
|
|
def __call__(self, data): |
|
if np.random.rand() > self.prob: |
|
return data |
|
img = data['image'] |
|
if not isinstance(img, Image.Image): |
|
img = np.ascontiguousarray(img) |
|
img = Image.fromarray(img) |
|
|
|
if six.PY2: |
|
img = super(RandAugment, self).__call__(img) |
|
else: |
|
img = super().__call__(img) |
|
|
|
if isinstance(img, Image.Image): |
|
img = np.asarray(img) |
|
data['image'] = img |
|
return data |
|
|