|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
|
|
|
|
class TableFPN(nn.Layer): |
|
def __init__(self, in_channels, out_channels, **kwargs): |
|
super(TableFPN, self).__init__() |
|
self.out_channels = 512 |
|
weight_attr = paddle.nn.initializer.KaimingUniform() |
|
self.in2_conv = nn.Conv2D( |
|
in_channels=in_channels[0], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.in3_conv = nn.Conv2D( |
|
in_channels=in_channels[1], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
stride = 1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.in4_conv = nn.Conv2D( |
|
in_channels=in_channels[2], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.in5_conv = nn.Conv2D( |
|
in_channels=in_channels[3], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p5_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p4_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p3_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p2_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.fuse_conv = nn.Conv2D( |
|
in_channels=self.out_channels * 4, |
|
out_channels=512, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), bias_attr=False) |
|
|
|
def forward(self, x): |
|
c2, c3, c4, c5 = x |
|
|
|
in5 = self.in5_conv(c5) |
|
in4 = self.in4_conv(c4) |
|
in3 = self.in3_conv(c3) |
|
in2 = self.in2_conv(c2) |
|
|
|
out4 = in4 + F.upsample( |
|
in5, size=in4.shape[2:4], mode="nearest", align_mode=1) |
|
out3 = in3 + F.upsample( |
|
out4, size=in3.shape[2:4], mode="nearest", align_mode=1) |
|
out2 = in2 + F.upsample( |
|
out3, size=in2.shape[2:4], mode="nearest", align_mode=1) |
|
|
|
p4 = F.upsample(out4, size=in5.shape[2:4], mode="nearest", align_mode=1) |
|
p3 = F.upsample(out3, size=in5.shape[2:4], mode="nearest", align_mode=1) |
|
p2 = F.upsample(out2, size=in5.shape[2:4], mode="nearest", align_mode=1) |
|
fuse = paddle.concat([in5, p4, p3, p2], axis=1) |
|
fuse_conv = self.fuse_conv(fuse) * 0.005 |
|
return [c5 + fuse_conv] |
|
|