|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py |
|
""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
from paddle import nn, ParamAttr |
|
from paddle.nn import functional as F |
|
import numpy as np |
|
|
|
from .tps_spatial_transformer import TPSSpatialTransformer |
|
|
|
|
|
def conv3x3_block(in_channels, out_channels, stride=1): |
|
n = 3 * 3 * out_channels |
|
w = math.sqrt(2. / n) |
|
conv_layer = nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
weight_attr=nn.initializer.Normal( |
|
mean=0.0, std=w), |
|
bias_attr=nn.initializer.Constant(0)) |
|
block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU()) |
|
return block |
|
|
|
|
|
class STN(nn.Layer): |
|
def __init__(self, in_channels, num_ctrlpoints, activation='none'): |
|
super(STN, self).__init__() |
|
self.in_channels = in_channels |
|
self.num_ctrlpoints = num_ctrlpoints |
|
self.activation = activation |
|
self.stn_convnet = nn.Sequential( |
|
conv3x3_block(in_channels, 32), |
|
nn.MaxPool2D( |
|
kernel_size=2, stride=2), |
|
conv3x3_block(32, 64), |
|
nn.MaxPool2D( |
|
kernel_size=2, stride=2), |
|
conv3x3_block(64, 128), |
|
nn.MaxPool2D( |
|
kernel_size=2, stride=2), |
|
conv3x3_block(128, 256), |
|
nn.MaxPool2D( |
|
kernel_size=2, stride=2), |
|
conv3x3_block(256, 256), |
|
nn.MaxPool2D( |
|
kernel_size=2, stride=2), |
|
conv3x3_block(256, 256)) |
|
self.stn_fc1 = nn.Sequential( |
|
nn.Linear( |
|
2 * 256, |
|
512, |
|
weight_attr=nn.initializer.Normal(0, 0.001), |
|
bias_attr=nn.initializer.Constant(0)), |
|
nn.BatchNorm1D(512), |
|
nn.ReLU()) |
|
fc2_bias = self.init_stn() |
|
self.stn_fc2 = nn.Linear( |
|
512, |
|
num_ctrlpoints * 2, |
|
weight_attr=nn.initializer.Constant(0.0), |
|
bias_attr=nn.initializer.Assign(fc2_bias)) |
|
|
|
def init_stn(self): |
|
margin = 0.01 |
|
sampling_num_per_side = int(self.num_ctrlpoints / 2) |
|
ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side) |
|
ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin |
|
ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin) |
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) |
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) |
|
ctrl_points = np.concatenate( |
|
[ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32) |
|
if self.activation == 'none': |
|
pass |
|
elif self.activation == 'sigmoid': |
|
ctrl_points = -np.log(1. / ctrl_points - 1.) |
|
ctrl_points = paddle.to_tensor(ctrl_points) |
|
fc2_bias = paddle.reshape( |
|
ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]]) |
|
return fc2_bias |
|
|
|
def forward(self, x): |
|
x = self.stn_convnet(x) |
|
batch_size, _, h, w = x.shape |
|
x = paddle.reshape(x, shape=(batch_size, -1)) |
|
img_feat = self.stn_fc1(x) |
|
x = self.stn_fc2(0.1 * img_feat) |
|
if self.activation == 'sigmoid': |
|
x = F.sigmoid(x) |
|
x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2]) |
|
return img_feat, x |
|
|
|
|
|
class STN_ON(nn.Layer): |
|
def __init__(self, in_channels, tps_inputsize, tps_outputsize, |
|
num_control_points, tps_margins, stn_activation): |
|
super(STN_ON, self).__init__() |
|
self.tps = TPSSpatialTransformer( |
|
output_image_size=tuple(tps_outputsize), |
|
num_control_points=num_control_points, |
|
margins=tuple(tps_margins)) |
|
self.stn_head = STN(in_channels=in_channels, |
|
num_ctrlpoints=num_control_points, |
|
activation=stn_activation) |
|
self.tps_inputsize = tps_inputsize |
|
self.out_channels = in_channels |
|
|
|
def forward(self, image): |
|
stn_input = paddle.nn.functional.interpolate( |
|
image, self.tps_inputsize, mode="bilinear", align_corners=True) |
|
stn_img_feat, ctrl_points = self.stn_head(stn_input) |
|
x, _ = self.tps(image, ctrl_points) |
|
return x |
|
|