|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/hikopensource/DAVAR-Lab-OCR/blob/main/davarocr/davar_rcg/models/backbones/ResNetRFL.py |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from paddle.nn.initializer import TruncatedNormal, Constant, Normal, KaimingNormal |
|
|
|
kaiming_init_ = KaimingNormal() |
|
zeros_ = Constant(value=0.) |
|
ones_ = Constant(value=1.) |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
"""Res-net Basic Block""" |
|
expansion = 1 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
norm_type='BN', |
|
**kwargs): |
|
""" |
|
Args: |
|
inplanes (int): input channel |
|
planes (int): channels of the middle feature |
|
stride (int): stride of the convolution |
|
downsample (int): type of the down_sample |
|
norm_type (str): type of the normalization |
|
**kwargs (None): backup parameter |
|
""" |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = self._conv3x3(inplanes, planes) |
|
self.bn1 = nn.BatchNorm(planes) |
|
self.conv2 = self._conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm(planes) |
|
self.relu = nn.ReLU() |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def _conv3x3(self, in_planes, out_planes, stride=1): |
|
|
|
return nn.Conv2D( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias_attr=False) |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNetRFL(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels=512, |
|
use_cnt=True, |
|
use_seq=True): |
|
""" |
|
|
|
Args: |
|
in_channels (int): input channel |
|
out_channels (int): output channel |
|
""" |
|
super(ResNetRFL, self).__init__() |
|
assert use_cnt or use_seq |
|
self.use_cnt, self.use_seq = use_cnt, use_seq |
|
self.backbone = RFLBase(in_channels) |
|
|
|
self.out_channels = out_channels |
|
self.out_channels_block = [ |
|
int(self.out_channels / 4), int(self.out_channels / 2), |
|
self.out_channels, self.out_channels |
|
] |
|
block = BasicBlock |
|
layers = [1, 2, 5, 3] |
|
self.inplanes = int(self.out_channels // 2) |
|
|
|
self.relu = nn.ReLU() |
|
if self.use_seq: |
|
self.maxpool3 = nn.MaxPool2D( |
|
kernel_size=2, stride=(2, 1), padding=(0, 1)) |
|
self.layer3 = self._make_layer( |
|
block, self.out_channels_block[2], layers[2], stride=1) |
|
self.conv3 = nn.Conv2D( |
|
self.out_channels_block[2], |
|
self.out_channels_block[2], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn3 = nn.BatchNorm(self.out_channels_block[2]) |
|
|
|
self.layer4 = self._make_layer( |
|
block, self.out_channels_block[3], layers[3], stride=1) |
|
self.conv4_1 = nn.Conv2D( |
|
self.out_channels_block[3], |
|
self.out_channels_block[3], |
|
kernel_size=2, |
|
stride=(2, 1), |
|
padding=(0, 1), |
|
bias_attr=False) |
|
self.bn4_1 = nn.BatchNorm(self.out_channels_block[3]) |
|
self.conv4_2 = nn.Conv2D( |
|
self.out_channels_block[3], |
|
self.out_channels_block[3], |
|
kernel_size=2, |
|
stride=1, |
|
padding=0, |
|
bias_attr=False) |
|
self.bn4_2 = nn.BatchNorm(self.out_channels_block[3]) |
|
|
|
if self.use_cnt: |
|
self.inplanes = int(self.out_channels // 2) |
|
self.v_maxpool3 = nn.MaxPool2D( |
|
kernel_size=2, stride=(2, 1), padding=(0, 1)) |
|
self.v_layer3 = self._make_layer( |
|
block, self.out_channels_block[2], layers[2], stride=1) |
|
self.v_conv3 = nn.Conv2D( |
|
self.out_channels_block[2], |
|
self.out_channels_block[2], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.v_bn3 = nn.BatchNorm(self.out_channels_block[2]) |
|
|
|
self.v_layer4 = self._make_layer( |
|
block, self.out_channels_block[3], layers[3], stride=1) |
|
self.v_conv4_1 = nn.Conv2D( |
|
self.out_channels_block[3], |
|
self.out_channels_block[3], |
|
kernel_size=2, |
|
stride=(2, 1), |
|
padding=(0, 1), |
|
bias_attr=False) |
|
self.v_bn4_1 = nn.BatchNorm(self.out_channels_block[3]) |
|
self.v_conv4_2 = nn.Conv2D( |
|
self.out_channels_block[3], |
|
self.out_channels_block[3], |
|
kernel_size=2, |
|
stride=1, |
|
padding=0, |
|
bias_attr=False) |
|
self.v_bn4_2 = nn.BatchNorm(self.out_channels_block[3]) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
|
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2D( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias_attr=False), |
|
nn.BatchNorm(planes * block.expansion), ) |
|
|
|
layers = list() |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, inputs): |
|
x_1 = self.backbone(inputs) |
|
|
|
if self.use_cnt: |
|
v_x = self.v_maxpool3(x_1) |
|
v_x = self.v_layer3(v_x) |
|
v_x = self.v_conv3(v_x) |
|
v_x = self.v_bn3(v_x) |
|
visual_feature_2 = self.relu(v_x) |
|
|
|
v_x = self.v_layer4(visual_feature_2) |
|
v_x = self.v_conv4_1(v_x) |
|
v_x = self.v_bn4_1(v_x) |
|
v_x = self.relu(v_x) |
|
v_x = self.v_conv4_2(v_x) |
|
v_x = self.v_bn4_2(v_x) |
|
visual_feature_3 = self.relu(v_x) |
|
else: |
|
visual_feature_3 = None |
|
if self.use_seq: |
|
x = self.maxpool3(x_1) |
|
x = self.layer3(x) |
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
x_2 = self.relu(x) |
|
|
|
x = self.layer4(x_2) |
|
x = self.conv4_1(x) |
|
x = self.bn4_1(x) |
|
x = self.relu(x) |
|
x = self.conv4_2(x) |
|
x = self.bn4_2(x) |
|
x_3 = self.relu(x) |
|
else: |
|
x_3 = None |
|
|
|
return [visual_feature_3, x_3] |
|
|
|
|
|
class ResNetBase(nn.Layer): |
|
def __init__(self, in_channels, out_channels, block, layers): |
|
super(ResNetBase, self).__init__() |
|
|
|
self.out_channels_block = [ |
|
int(out_channels / 4), int(out_channels / 2), out_channels, |
|
out_channels |
|
] |
|
|
|
self.inplanes = int(out_channels / 8) |
|
self.conv0_1 = nn.Conv2D( |
|
in_channels, |
|
int(out_channels / 16), |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn0_1 = nn.BatchNorm(int(out_channels / 16)) |
|
self.conv0_2 = nn.Conv2D( |
|
int(out_channels / 16), |
|
self.inplanes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn0_2 = nn.BatchNorm(self.inplanes) |
|
self.relu = nn.ReLU() |
|
|
|
self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) |
|
self.layer1 = self._make_layer(block, self.out_channels_block[0], |
|
layers[0]) |
|
self.conv1 = nn.Conv2D( |
|
self.out_channels_block[0], |
|
self.out_channels_block[0], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn1 = nn.BatchNorm(self.out_channels_block[0]) |
|
|
|
self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) |
|
self.layer2 = self._make_layer( |
|
block, self.out_channels_block[1], layers[1], stride=1) |
|
self.conv2 = nn.Conv2D( |
|
self.out_channels_block[1], |
|
self.out_channels_block[1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn2 = nn.BatchNorm(self.out_channels_block[1]) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2D( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias_attr=False), |
|
nn.BatchNorm(planes * block.expansion), ) |
|
|
|
layers = list() |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv0_1(x) |
|
x = self.bn0_1(x) |
|
x = self.relu(x) |
|
x = self.conv0_2(x) |
|
x = self.bn0_2(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool1(x) |
|
x = self.layer1(x) |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool2(x) |
|
x = self.layer2(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
|
|
return x |
|
|
|
|
|
class RFLBase(nn.Layer): |
|
""" Reciprocal feature learning share backbone network""" |
|
|
|
def __init__(self, in_channels, out_channels=512): |
|
super(RFLBase, self).__init__() |
|
self.ConvNet = ResNetBase(in_channels, out_channels, BasicBlock, |
|
[1, 2, 5, 3]) |
|
|
|
def forward(self, inputs): |
|
return self.ConvNet(inputs) |
|
|