|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Code is refer from: |
|
https://github.com/RuijieJ/pren/blob/main/Nets/EfficientNet.py |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import re |
|
import collections |
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
__all__ = ['EfficientNetb3'] |
|
|
|
GlobalParams = collections.namedtuple('GlobalParams', [ |
|
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes', |
|
'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth', |
|
'drop_connect_rate', 'image_size' |
|
]) |
|
|
|
BlockArgs = collections.namedtuple('BlockArgs', [ |
|
'kernel_size', 'num_repeat', 'input_filters', 'output_filters', |
|
'expand_ratio', 'id_skip', 'stride', 'se_ratio' |
|
]) |
|
|
|
|
|
class BlockDecoder: |
|
@staticmethod |
|
def _decode_block_string(block_string): |
|
assert isinstance(block_string, str) |
|
|
|
ops = block_string.split('_') |
|
options = {} |
|
for op in ops: |
|
splits = re.split(r'(\d.*)', op) |
|
if len(splits) >= 2: |
|
key, value = splits[:2] |
|
options[key] = value |
|
|
|
assert (('s' in options and len(options['s']) == 1) or |
|
(len(options['s']) == 2 and options['s'][0] == options['s'][1])) |
|
|
|
return BlockArgs( |
|
kernel_size=int(options['k']), |
|
num_repeat=int(options['r']), |
|
input_filters=int(options['i']), |
|
output_filters=int(options['o']), |
|
expand_ratio=int(options['e']), |
|
id_skip=('noskip' not in block_string), |
|
se_ratio=float(options['se']) if 'se' in options else None, |
|
stride=[int(options['s'][0])]) |
|
|
|
@staticmethod |
|
def decode(string_list): |
|
assert isinstance(string_list, list) |
|
blocks_args = [] |
|
for block_string in string_list: |
|
blocks_args.append(BlockDecoder._decode_block_string(block_string)) |
|
return blocks_args |
|
|
|
|
|
def efficientnet(width_coefficient=None, |
|
depth_coefficient=None, |
|
dropout_rate=0.2, |
|
drop_connect_rate=0.2, |
|
image_size=None, |
|
num_classes=1000): |
|
blocks_args = [ |
|
'r1_k3_s11_e1_i32_o16_se0.25', |
|
'r2_k3_s22_e6_i16_o24_se0.25', |
|
'r2_k5_s22_e6_i24_o40_se0.25', |
|
'r3_k3_s22_e6_i40_o80_se0.25', |
|
'r3_k5_s11_e6_i80_o112_se0.25', |
|
'r4_k5_s22_e6_i112_o192_se0.25', |
|
'r1_k3_s11_e6_i192_o320_se0.25', |
|
] |
|
blocks_args = BlockDecoder.decode(blocks_args) |
|
|
|
global_params = GlobalParams( |
|
batch_norm_momentum=0.99, |
|
batch_norm_epsilon=1e-3, |
|
dropout_rate=dropout_rate, |
|
drop_connect_rate=drop_connect_rate, |
|
num_classes=num_classes, |
|
width_coefficient=width_coefficient, |
|
depth_coefficient=depth_coefficient, |
|
depth_divisor=8, |
|
min_depth=None, |
|
image_size=image_size, ) |
|
return blocks_args, global_params |
|
|
|
|
|
class EffUtils: |
|
@staticmethod |
|
def round_filters(filters, global_params): |
|
""" Calculate and round number of filters based on depth multiplier. """ |
|
multiplier = global_params.width_coefficient |
|
if not multiplier: |
|
return filters |
|
divisor = global_params.depth_divisor |
|
min_depth = global_params.min_depth |
|
filters *= multiplier |
|
min_depth = min_depth or divisor |
|
new_filters = max(min_depth, |
|
int(filters + divisor / 2) // divisor * divisor) |
|
if new_filters < 0.9 * filters: |
|
new_filters += divisor |
|
return int(new_filters) |
|
|
|
@staticmethod |
|
def round_repeats(repeats, global_params): |
|
""" Round number of filters based on depth multiplier. """ |
|
multiplier = global_params.depth_coefficient |
|
if not multiplier: |
|
return repeats |
|
return int(math.ceil(multiplier * repeats)) |
|
|
|
|
|
class MbConvBlock(nn.Layer): |
|
def __init__(self, block_args): |
|
super(MbConvBlock, self).__init__() |
|
self._block_args = block_args |
|
self.has_se = (self._block_args.se_ratio is not None) and \ |
|
(0 < self._block_args.se_ratio <= 1) |
|
self.id_skip = block_args.id_skip |
|
|
|
|
|
self.inp = self._block_args.input_filters |
|
oup = self._block_args.input_filters * self._block_args.expand_ratio |
|
if self._block_args.expand_ratio != 1: |
|
self._expand_conv = nn.Conv2D(self.inp, oup, 1, bias_attr=False) |
|
self._bn0 = nn.BatchNorm(oup) |
|
|
|
|
|
k = self._block_args.kernel_size |
|
s = self._block_args.stride |
|
if isinstance(s, list): |
|
s = s[0] |
|
self._depthwise_conv = nn.Conv2D( |
|
oup, |
|
oup, |
|
groups=oup, |
|
kernel_size=k, |
|
stride=s, |
|
padding='same', |
|
bias_attr=False) |
|
self._bn1 = nn.BatchNorm(oup) |
|
|
|
|
|
if self.has_se: |
|
num_squeezed_channels = max(1, |
|
int(self._block_args.input_filters * |
|
self._block_args.se_ratio)) |
|
self._se_reduce = nn.Conv2D(oup, num_squeezed_channels, 1) |
|
self._se_expand = nn.Conv2D(num_squeezed_channels, oup, 1) |
|
|
|
|
|
self.final_oup = self._block_args.output_filters |
|
self._project_conv = nn.Conv2D(oup, self.final_oup, 1, bias_attr=False) |
|
self._bn2 = nn.BatchNorm(self.final_oup) |
|
self._swish = nn.Swish() |
|
|
|
def _drop_connect(self, inputs, p, training): |
|
if not training: |
|
return inputs |
|
batch_size = inputs.shape[0] |
|
keep_prob = 1 - p |
|
random_tensor = keep_prob |
|
random_tensor += paddle.rand([batch_size, 1, 1, 1], dtype=inputs.dtype) |
|
random_tensor = paddle.to_tensor(random_tensor, place=inputs.place) |
|
binary_tensor = paddle.floor(random_tensor) |
|
output = inputs / keep_prob * binary_tensor |
|
return output |
|
|
|
def forward(self, inputs, drop_connect_rate=None): |
|
|
|
x = inputs |
|
if self._block_args.expand_ratio != 1: |
|
x = self._swish(self._bn0(self._expand_conv(inputs))) |
|
x = self._swish(self._bn1(self._depthwise_conv(x))) |
|
|
|
|
|
if self.has_se: |
|
x_squeezed = F.adaptive_avg_pool2d(x, 1) |
|
x_squeezed = self._se_expand( |
|
self._swish(self._se_reduce(x_squeezed))) |
|
x = F.sigmoid(x_squeezed) * x |
|
x = self._bn2(self._project_conv(x)) |
|
|
|
|
|
if self.id_skip and self._block_args.stride == 1 and \ |
|
self.inp == self.final_oup: |
|
if drop_connect_rate: |
|
x = self._drop_connect( |
|
x, p=drop_connect_rate, training=self.training) |
|
x = x + inputs |
|
return x |
|
|
|
|
|
class EfficientNetb3_PREN(nn.Layer): |
|
def __init__(self, in_channels): |
|
super(EfficientNetb3_PREN, self).__init__() |
|
""" |
|
the fllowing are efficientnetb3's superparams, |
|
they means efficientnetb3 network's width, depth, resolution and |
|
dropout respectively, to fit for text recognition task, the resolution |
|
here is changed from 300 to 64. |
|
""" |
|
w, d, s, p = 1.2, 1.4, 64, 0.3 |
|
self._blocks_args, self._global_params = efficientnet( |
|
width_coefficient=w, |
|
depth_coefficient=d, |
|
dropout_rate=p, |
|
image_size=s) |
|
self.out_channels = [] |
|
|
|
out_channels = EffUtils.round_filters(32, self._global_params) |
|
self._conv_stem = nn.Conv2D( |
|
in_channels, out_channels, 3, 2, padding='same', bias_attr=False) |
|
self._bn0 = nn.BatchNorm(out_channels) |
|
|
|
|
|
self._blocks = [] |
|
|
|
self._concerned_block_idxes = [7, 17, 25] |
|
_concerned_idx = 0 |
|
for i, block_args in enumerate(self._blocks_args): |
|
block_args = block_args._replace( |
|
input_filters=EffUtils.round_filters(block_args.input_filters, |
|
self._global_params), |
|
output_filters=EffUtils.round_filters(block_args.output_filters, |
|
self._global_params), |
|
num_repeat=EffUtils.round_repeats(block_args.num_repeat, |
|
self._global_params)) |
|
self._blocks.append( |
|
self.add_sublayer(f"{i}-0", MbConvBlock(block_args))) |
|
_concerned_idx += 1 |
|
if _concerned_idx in self._concerned_block_idxes: |
|
self.out_channels.append(block_args.output_filters) |
|
if block_args.num_repeat > 1: |
|
block_args = block_args._replace( |
|
input_filters=block_args.output_filters, stride=1) |
|
for j in range(block_args.num_repeat - 1): |
|
self._blocks.append( |
|
self.add_sublayer(f'{i}-{j+1}', MbConvBlock(block_args))) |
|
_concerned_idx += 1 |
|
if _concerned_idx in self._concerned_block_idxes: |
|
self.out_channels.append(block_args.output_filters) |
|
|
|
self._swish = nn.Swish() |
|
|
|
def forward(self, inputs): |
|
outs = [] |
|
x = self._swish(self._bn0(self._conv_stem(inputs))) |
|
for idx, block in enumerate(self._blocks): |
|
drop_connect_rate = self._global_params.drop_connect_rate |
|
if drop_connect_rate: |
|
drop_connect_rate *= float(idx) / len(self._blocks) |
|
x = block(x, drop_connect_rate=drop_connect_rate) |
|
if idx in self._concerned_block_idxes: |
|
outs.append(x) |
|
return outs |
|
|