|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
import numpy as np |
|
import cv2 |
|
|
|
__all__ = ["Kie_backbone"] |
|
|
|
|
|
class Encoder(nn.Layer): |
|
def __init__(self, num_channels, num_filters): |
|
super(Encoder, self).__init__() |
|
self.conv1 = nn.Conv2D( |
|
num_channels, |
|
num_filters, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn1 = nn.BatchNorm(num_filters, act='relu') |
|
|
|
self.conv2 = nn.Conv2D( |
|
num_filters, |
|
num_filters, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn2 = nn.BatchNorm(num_filters, act='relu') |
|
|
|
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) |
|
|
|
def forward(self, inputs): |
|
x = self.conv1(inputs) |
|
x = self.bn1(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x_pooled = self.pool(x) |
|
return x, x_pooled |
|
|
|
|
|
class Decoder(nn.Layer): |
|
def __init__(self, num_channels, num_filters): |
|
super(Decoder, self).__init__() |
|
|
|
self.conv1 = nn.Conv2D( |
|
num_channels, |
|
num_filters, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn1 = nn.BatchNorm(num_filters, act='relu') |
|
|
|
self.conv2 = nn.Conv2D( |
|
num_filters, |
|
num_filters, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False) |
|
self.bn2 = nn.BatchNorm(num_filters, act='relu') |
|
|
|
self.conv0 = nn.Conv2D( |
|
num_channels, |
|
num_filters, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias_attr=False) |
|
self.bn0 = nn.BatchNorm(num_filters, act='relu') |
|
|
|
def forward(self, inputs_prev, inputs): |
|
x = self.conv0(inputs) |
|
x = self.bn0(x) |
|
x = paddle.nn.functional.interpolate( |
|
x, scale_factor=2, mode='bilinear', align_corners=False) |
|
x = paddle.concat([inputs_prev, x], axis=1) |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
return x |
|
|
|
|
|
class UNet(nn.Layer): |
|
def __init__(self): |
|
super(UNet, self).__init__() |
|
self.down1 = Encoder(num_channels=3, num_filters=16) |
|
self.down2 = Encoder(num_channels=16, num_filters=32) |
|
self.down3 = Encoder(num_channels=32, num_filters=64) |
|
self.down4 = Encoder(num_channels=64, num_filters=128) |
|
self.down5 = Encoder(num_channels=128, num_filters=256) |
|
|
|
self.up1 = Decoder(32, 16) |
|
self.up2 = Decoder(64, 32) |
|
self.up3 = Decoder(128, 64) |
|
self.up4 = Decoder(256, 128) |
|
self.out_channels = 16 |
|
|
|
def forward(self, inputs): |
|
x1, _ = self.down1(inputs) |
|
_, x2 = self.down2(x1) |
|
_, x3 = self.down3(x2) |
|
_, x4 = self.down4(x3) |
|
_, x5 = self.down5(x4) |
|
|
|
x = self.up4(x4, x5) |
|
x = self.up3(x3, x) |
|
x = self.up2(x2, x) |
|
x = self.up1(x1, x) |
|
return x |
|
|
|
|
|
class Kie_backbone(nn.Layer): |
|
def __init__(self, in_channels, **kwargs): |
|
super(Kie_backbone, self).__init__() |
|
self.out_channels = 16 |
|
self.img_feat = UNet() |
|
self.maxpool = nn.MaxPool2D(kernel_size=7) |
|
|
|
def bbox2roi(self, bbox_list): |
|
rois_list = [] |
|
rois_num = [] |
|
for img_id, bboxes in enumerate(bbox_list): |
|
rois_num.append(bboxes.shape[0]) |
|
rois_list.append(bboxes) |
|
rois = paddle.concat(rois_list, 0) |
|
rois_num = paddle.to_tensor(rois_num, dtype='int32') |
|
return rois, rois_num |
|
|
|
def pre_process(self, img, relations, texts, gt_bboxes, tag, img_size): |
|
img, relations, texts, gt_bboxes, tag, img_size = img.numpy( |
|
), relations.numpy(), texts.numpy(), gt_bboxes.numpy(), tag.numpy( |
|
).tolist(), img_size.numpy() |
|
temp_relations, temp_texts, temp_gt_bboxes = [], [], [] |
|
h, w = int(np.max(img_size[:, 0])), int(np.max(img_size[:, 1])) |
|
img = paddle.to_tensor(img[:, :, :h, :w]) |
|
batch = len(tag) |
|
for i in range(batch): |
|
num, recoder_len = tag[i][0], tag[i][1] |
|
temp_relations.append( |
|
paddle.to_tensor( |
|
relations[i, :num, :num, :], dtype='float32')) |
|
temp_texts.append( |
|
paddle.to_tensor( |
|
texts[i, :num, :recoder_len], dtype='float32')) |
|
temp_gt_bboxes.append( |
|
paddle.to_tensor( |
|
gt_bboxes[i, :num, ...], dtype='float32')) |
|
return img, temp_relations, temp_texts, temp_gt_bboxes |
|
|
|
def forward(self, inputs): |
|
img = inputs[0] |
|
relations, texts, gt_bboxes, tag, img_size = inputs[1], inputs[ |
|
2], inputs[3], inputs[5], inputs[-1] |
|
img, relations, texts, gt_bboxes = self.pre_process( |
|
img, relations, texts, gt_bboxes, tag, img_size) |
|
x = self.img_feat(img) |
|
boxes, rois_num = self.bbox2roi(gt_bboxes) |
|
feats = paddle.vision.ops.roi_align( |
|
x, boxes, spatial_scale=1.0, output_size=7, boxes_num=rois_num) |
|
feats = self.maxpool(feats).squeeze(-1).squeeze(-1) |
|
return [relations, texts, feats] |
|
|