CaioXapelaum commited on
Commit
bdcfa4c
1 Parent(s): 3e85e48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -180
app.py CHANGED
@@ -1,201 +1,48 @@
1
- import spaces
2
- import subprocess
3
- from llama_cpp import Llama
4
- from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
5
- from llama_cpp_agent.providers import LlamaCppPythonProvider
6
- from llama_cpp_agent.chat_history import BasicChatHistory
7
- from llama_cpp_agent.chat_history.messages import Roles
8
- import gradio as gr
9
- from huggingface_hub import hf_hub_download
10
  import os
11
- import cv2
12
-
13
- huggingface_token = os.environ.get('HF_TOKEN')
14
-
15
- # Download the Meta-Llama-3.1-8B-Instruct model
16
- hf_hub_download(
17
- repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
18
- filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
19
- local_dir="./models",
20
- token=huggingface_token
21
- )
22
-
23
- hf_hub_download(
24
- repo_id="bartowski/Mistral-Nemo-Instruct-2407-GGUF",
25
- filename="Mistral-Nemo-Instruct-2407-Q5_K_M.gguf",
26
- local_dir="./models",
27
- token=huggingface_token
28
- )
29
-
30
- hf_hub_download(
31
- repo_id="bartowski/gemma-2-2b-it-GGUF",
32
- filename="gemma-2-2b-it-Q6_K_L.gguf",
33
- local_dir="./models",
34
- token=huggingface_token
35
- )
36
-
37
- hf_hub_download(
38
- repo_id="bartowski/openchat-3.6-8b-20240522-GGUF",
39
- filename="openchat-3.6-8b-20240522-Q6_K.gguf",
40
- local_dir="./models",
41
- token=huggingface_token
42
- )
43
-
44
- hf_hub_download(
45
- repo_id="bartowski/Llama-3-Groq-8B-Tool-Use-GGUF",
46
- filename="Llama-3-Groq-8B-Tool-Use-Q6_K.gguf",
47
- local_dir="./models",
48
- token=huggingface_token
49
- )
50
-
51
- hf_hub_download(
52
- repo_id="bartowski/MiniCPM-V-2_6-GGUF",
53
- filename="MiniCPM-V-2_6-Q6_K.gguf",
54
- local_dir="./models",
55
- token=huggingface_token
56
- )
57
-
58
- hf_hub_download(
59
- repo_id="CaioXapelaum/Llama-3.1-Storm-8B-Q5_K_M-GGUF",
60
- filename="llama-3.1-storm-8b-q5_k_m.gguf",
61
- local_dir="./models",
62
- token=huggingface_token
63
- )
64
-
65
- hf_hub_download(
66
- repo_id="CaioXapelaum/Orca-2-7b-Patent-Instruct-Llama-2-Q5_K_M-GGUF",
67
- filename="orca-2-7b-patent-instruct-llama-2-q5_k_m.gguf",
68
- local_dir="./models",
69
- token=huggingface_token
70
- )
71
-
72
-
73
-
74
- llm = None
75
- llm_model = None
76
 
77
- cv2.setNumThreads(1)
78
 
79
  @spaces.GPU()
80
- def respond(
81
- message,
82
- history: list[tuple[str, str]],
83
- model,
84
- system_message,
85
- max_tokens,
86
- temperature,
87
- top_p,
88
- top_k,
89
- repeat_penalty,
90
- ):
91
- chat_template = MessagesFormatterType.GEMMA_2
92
-
93
  global llm
94
- global llm_model
95
 
96
- # Load model only if it's not already loaded or if a new model is selected
97
- if llm is None or llm_model != model:
98
  try:
99
- llm = Llama(
100
- model_path=f"models/{model}",
101
- flash_attn=True,
102
- n_gpu_layers=81, # Adjust based on available GPU resources
103
- n_batch=1024,
104
- n_ctx=8192,
105
  )
106
- llm_model = model
107
  except Exception as e:
108
  return f"Error loading model: {str(e)}"
109
 
110
- provider = LlamaCppPythonProvider(llm)
111
-
112
- agent = LlamaCppAgent(
113
- provider,
114
- system_prompt=f"{system_message}",
115
- predefined_messages_formatter_type=chat_template,
116
- debug_output=True
117
- )
118
-
119
- settings = provider.get_provider_default_settings()
120
- settings.temperature = temperature
121
- settings.top_k = top_k
122
- settings.top_p = top_p
123
- settings.max_tokens = max_tokens
124
- settings.repeat_penalty = repeat_penalty
125
- settings.stream = True
126
-
127
- messages = BasicChatHistory()
128
 
129
- # Add user and assistant messages to the history
130
- for msn in history:
131
- user = {'role': Roles.user, 'content': msn[0]}
132
- assistant = {'role': Roles.assistant, 'content': msn[1]}
133
- messages.add_message(user)
134
- messages.add_message(assistant)
135
-
136
- # Stream the response
137
  try:
138
- stream = agent.get_chat_response(
139
- message,
140
- llm_sampling_settings=settings,
141
- chat_history=messages,
142
- returns_streaming_generator=True,
143
- print_output=False
144
  )
145
 
146
- outputs = ""
147
- for output in stream:
148
- outputs += output
149
- yield outputs
 
150
  except Exception as e:
151
- yield f"Error during response generation: {str(e)}"
152
 
 
153
  demo = gr.ChatInterface(
154
- fn=respond,
155
- additional_inputs=[
156
- gr.Dropdown([
157
- 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf',
158
- 'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf',
159
- 'gemma-2-2b-it-Q6_K_L.gguf',
160
- 'openchat-3.6-8b-20240522-Q6_K.gguf',
161
- 'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf',
162
- 'MiniCPM-V-2_6-Q6_K.gguf',
163
- 'llama-3.1-storm-8b-q5_k_m.gguf',
164
- 'orca-2-7b-patent-instruct-llama-2-q5_k_m.gguf'
165
- ],
166
- value="gemma-2-2b-it-Q6_K_L.gguf",
167
- label="Model"
168
- ),
169
- gr.Textbox(value="You are a helpful assistant.", label="System message"),
170
- gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
171
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
172
- gr.Slider(
173
- minimum=0.1,
174
- maximum=1.0,
175
- value=0.95,
176
- step=0.05,
177
- label="Top-p",
178
- ),
179
- gr.Slider(
180
- minimum=0,
181
- maximum=100,
182
- value=40,
183
- step=1,
184
- label="Top-k",
185
- ),
186
- gr.Slider(
187
- minimum=0.0,
188
- maximum=2.0,
189
- value=1.1,
190
- step=0.1,
191
- label="Repetition penalty",
192
- ),
193
- ],
194
- retry_btn="Retry",
195
- undo_btn="Undo",
196
- clear_btn="Clear",
197
- submit_btn="Send",
198
- title="Chat with lots of Models and LLMs using llama.cpp",
199
  chatbot=gr.Chatbot(
200
  scale=1,
201
  likeable=False,
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import gradio as gr
3
+ from llama_cpp import Llama
4
+ import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ llm = None # Global model variable
7
 
8
  @spaces.GPU()
9
+ def chat(message, history):
 
 
 
 
 
 
 
 
 
 
 
 
10
  global llm
 
11
 
12
+ # Initialize Llama model if not already loaded
13
+ if llm is None:
14
  try:
15
+ llm = Llama.from_pretrained(
16
+ repo_id="bartowski/Meta-Llama-3.1-70B-Instruct-GGUF",
17
+ filename="Meta-Llama-3.1-70B-Instruct-Q4_K_S.gguf",
18
+ verbose=False # Set to True if you need debug information
 
 
19
  )
 
20
  except Exception as e:
21
  return f"Error loading model: {str(e)}"
22
 
23
+ # Prepare the chat history
24
+ chat_history = [{"role": "user", "content": user_input} for user_input, _ in history]
25
+ chat_history.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ # Stream the response back as it's generated
 
 
 
 
 
 
 
28
  try:
29
+ response_stream = llm.create_chat_completion_stream(
30
+ messages=chat_history,
31
+ stream=True # Ensure streaming is enabled
 
 
 
32
  )
33
 
34
+ output = ""
35
+ for chunk in response_stream:
36
+ output += chunk['text'] # Collect and stream text chunks
37
+ yield output # Stream each updated response chunk
38
+
39
  except Exception as e:
40
+ yield f"Error generating response: {str(e)}"
41
 
42
+ # Gradio Chat Interface setup
43
  demo = gr.ChatInterface(
44
+ fn=chat, # Function to call when the user sends a message
45
+ title="Chat with Meta-Llama 3.1 70B", # Title for the chat interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  chatbot=gr.Chatbot(
47
  scale=1,
48
  likeable=False,