Cachoups commited on
Commit
6dbee67
·
verified ·
1 Parent(s): 255a8fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -395,9 +395,9 @@ function refresh() {
395
 
396
  # Define custom colors for the labels
397
  color_map = {
398
- "Positive": "#00FF00", # Green for positive
399
- "Neutral": "#0000FF", # Blue for neutral
400
- "Negative": "#FF0000" # Red for negative
401
  }
402
 
403
 
@@ -464,8 +464,8 @@ with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
464
  # Summarize the selected paragraph from PDF 1
465
  summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
466
 
467
- sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
468
- sentiment_textbox_1 = gr.Label(label="Classification for paragrapg from PDF 1")
469
 
470
  # Classify the financial tone of the selected paragraph from PDF 1
471
  sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
@@ -499,8 +499,8 @@ with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
499
  # Summarize the selected paragraph from PDF 2
500
  summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
501
 
502
- sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
503
- sentiment_textbox_2 = gr.Label(label="Classification for paragraph from PDF 2")
504
 
505
  # Classify the financial tone of the selected paragraph from PDF 2
506
  sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
 
395
 
396
  # Define custom colors for the labels
397
  color_map = {
398
+ "POSITIVE": "#00FF00", # Green for positive
399
+ "NEUTRAL": "#0000FF", # Blue for neutral
400
+ "NEGATIVE": "#FF0000" # Red for negative
401
  }
402
 
403
 
 
464
  # Summarize the selected paragraph from PDF 1
465
  summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
466
 
467
+ sentiment_btn1 = gr.Button("Classify Financial Tone for paragraph from PDF 1")
468
+ sentiment_textbox_1 = gr.Label(label="Classification from PDF 1")
469
 
470
  # Classify the financial tone of the selected paragraph from PDF 1
471
  sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
 
499
  # Summarize the selected paragraph from PDF 2
500
  summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
501
 
502
+ sentiment_btn2 = gr.Button("Classify Financial Tone for paragraph from PDF 2")
503
+ sentiment_textbox_2 = gr.Label(label="Classification from PDF 2")
504
 
505
  # Classify the financial tone of the selected paragraph from PDF 2
506
  sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)