Cachoups commited on
Commit
1807b97
·
verified ·
1 Parent(s): 337cec1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -199,9 +199,9 @@ def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
199
 
200
  def generate_text(df, country, theme):
201
  # Filter the dataframe based on the country
202
- for column in df.columns:
203
- if column != 'Country':
204
- df[column] = df[column].apply(lambda x: f"{x:.6f}%")
205
  row = df[df['Country'] == country].iloc[0]
206
 
207
  # Convert the row to a string format for prompt
@@ -218,10 +218,10 @@ def generate_text(df, country, theme):
218
 
219
  Example 1 (Australia - GDP):
220
  Country: Australia
221
- Adverse 2020: -0.427975%
222
- Adverse 2021: -1.987167%
223
- Adverse 2022: -1.195906%
224
- Adverse Cumulative: -3.573762%
225
  The topic is GDP.
226
 
227
  Summary:
@@ -229,16 +229,18 @@ def generate_text(df, country, theme):
229
 
230
  Example 2 (Poland - HICP):
231
  Country: Poland
232
- Adverse 2023: 17.656378%
233
- Adverse 2024: 8.188389%
234
- Adverse 2025: 4.321625%
235
- Adverse Cumulative: 32.79156%
236
  The topic is HICP.
237
 
238
  Summary:
239
  In the adverse scenario, the HICP rate in Poland was 17.656378% in 2023, decreased to 8.188389% in 2024, and continued to decrease to 4.321625% in 2025. The cumulative adverse HICP rate over the period is 32.79156%.
240
 
241
  Now, use the following data for {theme} in {country} to generate a similar summary:
 
 
242
  {row_str}
243
 
244
  The topic is {theme}. Summarize the data, ensuring that the summary reflects the theme accurately. Follow the pattern of the examples provided and describe any changes in values using terms like 'increase' and 'decrease'. Make sure the output aligns with the data.
 
199
 
200
  def generate_text(df, country, theme):
201
  # Filter the dataframe based on the country
202
+ #for column in df.columns:
203
+ # if column != 'Country':
204
+ # df[column] = df[column].apply(lambda x: f"{x:.6f}%")
205
  row = df[df['Country'] == country].iloc[0]
206
 
207
  # Convert the row to a string format for prompt
 
218
 
219
  Example 1 (Australia - GDP):
220
  Country: Australia
221
+ Adverse 2020: -0.427975
222
+ Adverse 2021: -1.987167
223
+ Adverse 2022: -1.195906
224
+ Adverse Cumulative: -3.573762
225
  The topic is GDP.
226
 
227
  Summary:
 
229
 
230
  Example 2 (Poland - HICP):
231
  Country: Poland
232
+ Adverse 2023: 17.656378
233
+ Adverse 2024: 8.188389
234
+ Adverse 2025: 4.321625
235
+ Adverse Cumulative: 32.79156
236
  The topic is HICP.
237
 
238
  Summary:
239
  In the adverse scenario, the HICP rate in Poland was 17.656378% in 2023, decreased to 8.188389% in 2024, and continued to decrease to 4.321625% in 2025. The cumulative adverse HICP rate over the period is 32.79156%.
240
 
241
  Now, use the following data for {theme} in {country} to generate a similar summary:
242
+
243
+ Example 3 ({country} - {theme}):
244
  {row_str}
245
 
246
  The topic is {theme}. Summarize the data, ensuring that the summary reflects the theme accurately. Follow the pattern of the examples provided and describe any changes in values using terms like 'increase' and 'decrease'. Make sure the output aligns with the data.