CWrecker's picture
Update app.py
00a644a
raw
history blame
1.81 kB
import cv2
import gradio as gr
from ultralytics import YOLO
def inference(path:str, threshold:float=0.6):
print("trying inference with path", path)
if path is None:
return None,0
model = YOLO('yolo8n_small.pt') # Caution new API since Ultralytics 8.0.43
outputs = model.predict(source=path, show=False, conf=threshold) # new API with Ultralytics 8.0.43. Accepts 'show', 'classes', 'stream', 'conf' (default is 0.25)
image = cv2.imread(path)
counter = 0
for output in outputs: # mono item batch
conf = output.boxes.conf # the tensor of detection confidences
xyxy = output.boxes.xyxy
cls = output.boxes.cls # 0 is 'person' and 5 is 'bus' 16 is dog
nb=cls.size(dim=0)
for i in range(nb):
box = xyxy[i]
if conf[i]<threshold:
break
cv2.rectangle(
image,
(int(box[0]), int(box[1])),
(int(box[2]), int(box[3])),
color=(0, 0, 255),
thickness=2,
)
counter+=1
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), counter
gr.Interface(
fn = inference,
inputs = [ gr.components.Image(type="filepath", label="Input"), gr.Slider(minimum=0.5, maximum=0.9, step=0.05, value=0.7, label="Confidence threshold") ],
outputs = [ gr.components.Image(type="numpy", label="Output"), gr.Label(label="Number of legos detected for given confidence threshold") ],
title="Person detection with YOLO v8",
description="Person detection, you can tweak the corresponding confidence threshold. Good results even when face not visible. New API since Ultralytics 8.0.43.",
examples=[ ['sample1.jpg'], ['sample2.jpg']],
allow_flagging="never"
).launch(debug=True, enable_queue=True)