Spaces:
Runtime error
Runtime error
Upload extract_feature.py
Browse files- extract_feature.py +51 -0
extract_feature.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse, os, json
|
2 |
+
import numpy as np
|
3 |
+
from imageio import imread
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
import ssl
|
9 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
10 |
+
|
11 |
+
|
12 |
+
def build_model(model='resnet101', model_stage=3):
|
13 |
+
cnn = getattr(torchvision.models, model)(pretrained=True)
|
14 |
+
layers = [
|
15 |
+
cnn.conv1,
|
16 |
+
cnn.bn1,
|
17 |
+
cnn.relu,
|
18 |
+
cnn.maxpool,
|
19 |
+
]
|
20 |
+
for i in range(model_stage):
|
21 |
+
name = 'layer%d' % (i + 1)
|
22 |
+
layers.append(getattr(cnn, name))
|
23 |
+
model = torch.nn.Sequential(*layers)
|
24 |
+
# model.cuda()
|
25 |
+
model.eval()
|
26 |
+
return model
|
27 |
+
|
28 |
+
|
29 |
+
def run_image(img, model):
|
30 |
+
mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1)
|
31 |
+
std = np.array([0.229, 0.224, 0.224]).reshape(1, 3, 1, 1)
|
32 |
+
|
33 |
+
image = np.concatenate([img], 0).astype(np.float32)
|
34 |
+
image = (image / 255.0 - mean) / std
|
35 |
+
image = torch.FloatTensor(image)
|
36 |
+
image = torch.autograd.Variable(image, volatile=True)
|
37 |
+
|
38 |
+
feats = model(image)
|
39 |
+
feats = feats.data.cpu().clone().numpy()
|
40 |
+
|
41 |
+
return feats
|
42 |
+
|
43 |
+
|
44 |
+
def get_img_feat(cnn_model, img, image_height=224, image_width=224):
|
45 |
+
img_size = (image_height, image_width)
|
46 |
+
img = np.array(Image.fromarray(np.uint8(img)).resize(img_size))
|
47 |
+
img = img.transpose(2, 0, 1)[None]
|
48 |
+
feats = run_image(img, cnn_model)
|
49 |
+
_, C, H, W = feats.shape
|
50 |
+
feat_dset = feats.reshape(1, C, H, W)
|
51 |
+
return feat_dset
|