v-doc_abstractive_mac / mac_cell.py
ydin0771's picture
Upload mac_cell.py
be859e7
raw
history blame
25 kB
import collections
import numpy as np
import tensorflow as tf
import ops
from config import config
MACCellTuple = collections.namedtuple("MACCellTuple", ("control", "memory"))
'''
The MAC cell.
Recurrent cell for multi-step reasoning. Presented in https://arxiv.org/abs/1803.03067.
The cell has recurrent control and memory states that interact with the question
and knowledge base (image) respectively.
The hidden state structure is MACCellTuple(control, memory)
At each step the cell performs by calling to three subunits: control, read and write.
1. The Control Unit computes the control state by computing attention over the question words.
The control state represents the current reasoning operation the cell performs.
2. The Read Unit retrieves information from the knowledge base, given the control and previous
memory values, by computing 2-stages attention over the knowledge base.
3. The Write Unit integrates the retrieved information to the previous hidden memory state,
given the value of the control state, to perform the current reasoning operation.
'''
class MACCell(tf.nn.rnn_cell.RNNCell):
'''Initialize the MAC cell.
(Note that in the current version the cell is stateful --
updating its own internals when being called)
Args:
vecQuestions: the vector representation of the questions.
[batchSize, ctrlDim]
questionWords: the question words embeddings.
[batchSize, questionLength, ctrlDim]
questionCntxWords: the encoder outputs -- the "contextual" question words.
[batchSize, questionLength, ctrlDim]
questionLengths: the length of each question.
[batchSize]
memoryDropout: dropout on the memory state (Tensor scalar).
readDropout: dropout inside the read unit (Tensor scalar).
writeDropout: dropout on the new information that gets into the write unit (Tensor scalar).
batchSize: batch size (Tensor scalar).
train: train or test mod (Tensor boolean).
reuse: reuse cell
knowledgeBase:
'''
def __init__(self, vecQuestions, questionWords, questionCntxWords, questionLengths,
knowledgeBase, memoryDropout, readDropout, writeDropout,
batchSize, train, reuse = None):
self.vecQuestions = vecQuestions
self.questionWords = questionWords
self.questionCntxWords = questionCntxWords
self.questionLengths = questionLengths
self.knowledgeBase = knowledgeBase
self.dropouts = {}
self.dropouts["memory"] = memoryDropout
self.dropouts["read"] = readDropout
self.dropouts["write"] = writeDropout
self.none = tf.zeros((batchSize, 1), dtype = tf.float32)
self.batchSize = batchSize
self.train = train
self.reuse = reuse
'''
Cell state size.
'''
@property
def state_size(self):
return MACCellTuple(config.ctrlDim, config.memDim)
'''
Cell output size. Currently it doesn't have any outputs.
'''
@property
def output_size(self):
return 1
# pass encoder hidden states to control?
'''
The Control Unit: computes the new control state -- the reasoning operation,
by summing up the word embeddings according to a computed attention distribution.
The unit is recurrent: it receives the whole question and the previous control state,
merge them together (resulting in the "continuous control"), and then uses that
to compute attentions over the question words. Finally, it combines the words
together according to the attention distribution to get the new control state.
Args:
controlInput: external inputs to control unit (the question vector).
[batchSize, ctrlDim]
inWords: the representation of the words used to compute the attention.
[batchSize, questionLength, ctrlDim]
outWords: the representation of the words that are summed up.
(by default inWords == outWords)
[batchSize, questionLength, ctrlDim]
questionLengths: the length of each question.
[batchSize]
control: the previous control hidden state value.
[batchSize, ctrlDim]
contControl: optional corresponding continuous control state
(before casting the attention over the words).
[batchSize, ctrlDim]
Returns:
the new control state
[batchSize, ctrlDim]
the continuous (pre-attention) control
[batchSize, ctrlDim]
'''
def control(self, controlInput, inWords, outWords, questionLengths,
control, contControl = None, name = "", reuse = None):
with tf.variable_scope("control" + name, reuse = reuse):
dim = config.ctrlDim
## Step 1: compute "continuous" control state given previous control and question.
# control inputs: question and previous control
newContControl = controlInput
if config.controlFeedPrev:
newContControl = control if config.controlFeedPrevAtt else contControl
if config.controlFeedInputs:
newContControl = tf.concat([newContControl, controlInput], axis = -1)
dim += config.ctrlDim
# merge inputs together
newContControl = ops.linear(newContControl, dim, config.ctrlDim,
act = config.controlContAct, name = "contControl")
dim = config.ctrlDim
## Step 2: compute attention distribution over words and sum them up accordingly.
# compute interactions with question words
interactions = tf.expand_dims(newContControl, axis = 1) * inWords
# optionally concatenate words
if config.controlConcatWords:
interactions = tf.concat([interactions, inWords], axis = -1)
dim += config.ctrlDim
# optional projection
if config.controlProj:
interactions = ops.linear(interactions, dim, config.ctrlDim,
act = config.controlProjAct)
dim = config.ctrlDim
# compute attention distribution over words and summarize them accordingly
logits = ops.inter2logits(interactions, dim)
# self.interL = (interW, interb)
# if config.controlCoverage:
# logits += coverageBias * coverage
attention = tf.nn.softmax(ops.expMask(logits, questionLengths))
self.attentions["question"].append(attention)
# if config.controlCoverage:
# coverage += attention # Add logits instead?
newControl = ops.att2Smry(attention, outWords)
# ablation: use continuous control (pre-attention) instead
if config.controlContinuous:
newControl = newContControl
return newControl, newContControl
'''
The read unit extracts relevant information from the knowledge base given the
cell's memory and control states. It computes attention distribution over
the knowledge base by comparing it first to the memory and then to the control.
Finally, it uses the attention distribution to sum up the knowledge base accordingly,
resulting in an extraction of relevant information.
Args:
knowledge base: representation of the knowledge base (image).
[batchSize, kbSize (Height * Width), memDim]
memory: the cell's memory state
[batchSize, memDim]
control: the cell's control state
[batchSize, ctrlDim]
Returns the information extracted.
[batchSize, memDim]
'''
def read(self, knowledgeBase, memory, control, name = "", reuse = None):
with tf.variable_scope("read" + name, reuse = reuse):
dim = config.memDim
## memory dropout
if config.memoryVariationalDropout:
memory = ops.applyVarDpMask(memory, self.memDpMask, self.dropouts["memory"])
else:
memory = tf.nn.dropout(memory, self.dropouts["memory"])
## Step 1: knowledge base / memory interactions
# parameters for knowledge base and memory projection
proj = None
if config.readProjInputs:
proj = {"dim": config.attDim, "shared": config.readProjShared, "dropout": self.dropouts["read"] }
dim = config.attDim
# parameters for concatenating knowledge base elements
concat = {"x": config.readMemConcatKB, "proj": config.readMemConcatProj}
# compute interactions between knowledge base and memory
interactions, interDim = ops.mul(x = knowledgeBase, y = memory, dim = config.memDim,
proj = proj, concat = concat, interMod = config.readMemAttType, name = "memInter")
projectedKB = proj.get("x") if proj else None
# project memory interactions back to hidden dimension
if config.readMemProj:
interactions = ops.linear(interactions, interDim, dim, act = config.readMemAct,
name = "memKbProj")
else:
dim = interDim
## Step 2: compute interactions with control
if config.readCtrl:
# compute interactions with control
if config.ctrlDim != dim:
control = ops.linear(control, ctrlDim, dim, name = "ctrlProj")
interactions, interDim = ops.mul(interactions, control, dim,
interMod = config.readCtrlAttType, concat = {"x": config.readCtrlConcatInter},
name = "ctrlInter")
# optionally concatenate knowledge base elements
if config.readCtrlConcatKB:
if config.readCtrlConcatProj:
addedInp, addedDim = projectedKB, config.attDim
else:
addedInp, addedDim = knowledgeBase, config.memDim
interactions = tf.concat([interactions, addedInp], axis = -1)
dim += addedDim
# optional nonlinearity
interactions = ops.activations[config.readCtrlAct](interactions)
## Step 3: sum attentions up over the knowledge base
# transform vectors to attention distribution
attention = ops.inter2att(interactions, dim, dropout = self.dropouts["read"])
self.attentions["kb"].append(attention)
# optionally use projected knowledge base instead of original
if config.readSmryKBProj:
knowledgeBase = projectedKB
# sum up the knowledge base according to the distribution
information = ops.att2Smry(attention, knowledgeBase)
return information
'''
The write unit integrates newly retrieved information (from the read unit),
with the cell's previous memory hidden state, resulting in a new memory value.
The unit optionally supports:
1. Self-attention to previous control / memory states, in order to consider previous steps
in the reasoning process.
2. Gating between the new memory and previous memory states, to allow dynamic adjustment
of the reasoning process length.
Args:
memory: the cell's memory state
[batchSize, memDim]
info: the information to integrate with the memory
[batchSize, memDim]
control: the cell's control state
[batchSize, ctrlDim]
contControl: optional corresponding continuous control state
(before casting the attention over the words).
[batchSize, ctrlDim]
Return the new memory
[batchSize, memDim]
'''
def write(self, memory, info, control, contControl = None, name = "", reuse = None):
with tf.variable_scope("write" + name, reuse = reuse):
# optionally project info
if config.writeInfoProj:
info = ops.linear(info, config.memDim, config.memDim, name = "info")
# optional info nonlinearity
info = ops.activations[config.writeInfoAct](info)
# compute self-attention vector based on previous controls and memories
if config.writeSelfAtt:
selfControl = control
if config.writeSelfAttMod == "CONT":
selfControl = contControl
# elif config.writeSelfAttMod == "POST":
# selfControl = postControl
selfControl = ops.linear(selfControl, config.ctrlDim, config.ctrlDim, name = "ctrlProj")
interactions = self.controls * tf.expand_dims(selfControl, axis = 1)
# if config.selfAttShareInter:
# selfAttlogits = self.linearP(selfAttInter, config.encDim, 1, self.interL[0], self.interL[1], name = "modSelfAttInter")
attention = ops.inter2att(interactions, config.ctrlDim, name = "selfAttention")
self.attentions["self"].append(attention)
selfSmry = ops.att2Smry(attention, self.memories)
# get write unit inputs: previous memory, the new info, optionally self-attention / control
newMemory, dim = memory, config.memDim
if config.writeInputs == "INFO":
newMemory = info
elif config.writeInputs == "SUM":
newMemory += info
elif config.writeInputs == "BOTH":
newMemory, dim = ops.concat(newMemory, info, dim, mul = config.writeConcatMul)
# else: MEM
if config.writeSelfAtt:
newMemory = tf.concat([newMemory, selfSmry], axis = -1)
dim += config.memDim
if config.writeMergeCtrl:
newMemory = tf.concat([newMemory, control], axis = -1)
dim += config.memDim
# project memory back to memory dimension
if config.writeMemProj or (dim != config.memDim):
newMemory = ops.linear(newMemory, dim, config.memDim, name = "newMemory")
# optional memory nonlinearity
newMemory = ops.activations[config.writeMemAct](newMemory)
# write unit gate
if config.writeGate:
gateDim = config.memDim
if config.writeGateShared:
gateDim = 1
z = tf.sigmoid(ops.linear(control, config.ctrlDim, gateDim, name = "gate", bias = config.writeGateBias))
self.attentions["gate"].append(z)
newMemory = newMemory * z + memory * (1 - z)
# optional batch normalization
if config.memoryBN:
newMemory = tf.contrib.layers.batch_norm(newMemory, decay = config.bnDecay,
center = config.bnCenter, scale = config.bnScale,
is_training = self.train, updates_collections = None)
return newMemory
def memAutoEnc(newMemory, info, control, name = "", reuse = None):
with tf.variable_scope("memAutoEnc" + name, reuse = reuse):
# inputs to auto encoder
features = info if config.autoEncMemInputs == "INFO" else newMemory
features = ops.linear(features, config.memDim, config.ctrlDim,
act = config.autoEncMemAct, name = "aeMem")
# reconstruct control
if config.autoEncMemLoss == "CONT":
loss = tf.reduce_mean(tf.squared_difference(control, features))
else:
interactions, dim = ops.mul(self.questionCntxWords, features, config.ctrlDim,
concat = {"x": config.autoEncMemCnct}, mulBias = config.mulBias, name = "aeMem")
logits = ops.inter2logits(interactions, dim)
logits = self.expMask(logits, self.questionLengths)
# reconstruct word attentions
if config.autoEncMemLoss == "PROB":
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
labels = self.attentions["question"][-1], logits = logits))
# reconstruct control through words attentions
else:
attention = tf.nn.softmax(logits)
summary = ops.att2Smry(attention, self.questionCntxWords)
loss = tf.reduce_mean(tf.squared_difference(control, summary))
return loss
'''
Call the cell to get new control and memory states.
Args:
inputs: in the current implementation the cell don't get recurrent inputs
every iteration (argument for comparability with rnn interface).
state: the cell current state (control, memory)
MACCellTuple([batchSize, ctrlDim],[batchSize, memDim])
Returns the new state -- the new memory and control values.
MACCellTuple([batchSize, ctrlDim],[batchSize, memDim])
'''
def __call__(self, inputs, state, scope = None):
scope = scope or type(self).__name__
with tf.variable_scope(scope, reuse = self.reuse): # as tfscope
control = state.control
memory = state.memory
# cell sharing
inputName = "qInput"
inputNameU = "qInputU"
inputReuseU = inputReuse = (self.iteration > 0)
if config.controlInputUnshared:
inputNameU = "qInput%d" % self.iteration
inputReuseU = None
cellName = ""
cellReuse = (self.iteration > 0)
if config.unsharedCells:
cellName = str(self.iteration)
cellReuse = None
## control unit
# prepare question input to control
controlInput = ops.linear(self.vecQuestions, config.ctrlDim, config.ctrlDim,
name = inputName, reuse = inputReuse)
controlInput = ops.activations[config.controlInputAct](controlInput)
controlInput = ops.linear(controlInput, config.ctrlDim, config.ctrlDim,
name = inputNameU, reuse = inputReuseU)
newControl, self.contControl = self.control(controlInput, self.inWords, self.outWords,
self.questionLengths, control, self.contControl, name = cellName, reuse = cellReuse)
# read unit
# ablation: use whole question as control
if config.controlWholeQ:
newControl = self.vecQuestions
# ops.linear(self.vecQuestions, config.ctrlDim, projDim, name = "qMod")
info = self.read(self.knowledgeBase, memory, newControl, name = cellName, reuse = cellReuse)
if config.writeDropout < 1.0:
# write unit
info = tf.nn.dropout(info, self.dropouts["write"])
newMemory = self.write(memory, info, newControl, self.contControl, name = cellName, reuse = cellReuse)
# add auto encoder loss for memory
# if config.autoEncMem:
# self.autoEncLosses["memory"] += memAutoEnc(newMemory, info, newControl)
# append as standard list?
self.controls = tf.concat([self.controls, tf.expand_dims(newControl, axis = 1)], axis = 1)
self.memories = tf.concat([self.memories, tf.expand_dims(newMemory, axis = 1)], axis = 1)
self.infos = tf.concat([self.infos, tf.expand_dims(info, axis = 1)], axis = 1)
# self.contControls = tf.concat([self.contControls, tf.expand_dims(contControl, axis = 1)], axis = 1)
# self.postControls = tf.concat([self.controls, tf.expand_dims(postControls, axis = 1)], axis = 1)
newState = MACCellTuple(newControl, newMemory)
return self.none, newState
'''
Initializes the a hidden state to based on the value of the initType:
"PRM" for parametric initialization
"ZERO" for zero initialization
"Q" to initialize to question vectors.
Args:
name: the state variable name.
dim: the dimension of the state.
initType: the type of the initialization
batchSize: the batch size
Returns the initialized hidden state.
'''
def initState(self, name, dim, initType, batchSize):
if initType == "PRM":
prm = tf.get_variable(name, shape = (dim, ),
initializer = tf.random_normal_initializer())
initState = tf.tile(tf.expand_dims(prm, axis = 0), [batchSize, 1])
elif initType == "ZERO":
initState = tf.zeros((batchSize, dim), dtype = tf.float32)
else: # "Q"
initState = self.vecQuestions
return initState
'''
Add a parametric null word to the questions.
Args:
words: the words to add a null word to.
[batchSize, questionLentgth]
lengths: question lengths.
[batchSize]
Returns the updated word sequence and lengths.
'''
def addNullWord(words, lengths):
nullWord = tf.get_variable("zeroWord", shape = (1 , config.ctrlDim), initializer = tf.random_normal_initializer())
nullWord = tf.tile(tf.expand_dims(nullWord, axis = 0), [self.batchSize, 1, 1])
words = tf.concat([nullWord, words], axis = 1)
lengths += 1
return words, lengths
'''
Initializes the cell internal state (currently it's stateful). In particular,
1. Data-structures (lists of attention maps and accumulated losses).
2. The memory and control states.
3. The knowledge base (optionally merging it with the question vectors)
4. The question words used by the cell (either the original word embeddings, or the
encoder outputs, with optional projection).
Args:
batchSize: the batch size
Returns the initial cell state.
'''
def zero_state(self, batchSize, dtype = tf.float32):
## initialize data-structures
self.attentions = {"kb": [], "question": [], "self": [], "gate": []}
self.autoEncLosses = {"control": tf.constant(0.0), "memory": tf.constant(0.0)}
## initialize state
initialControl = self.initState("initCtrl", config.ctrlDim, config.initCtrl, batchSize)
initialMemory = self.initState("initMem", config.memDim, config.initMem, batchSize)
self.controls = tf.expand_dims(initialControl, axis = 1)
self.memories = tf.expand_dims(initialMemory, axis = 1)
self.infos = tf.expand_dims(initialMemory, axis = 1)
self.contControl = initialControl
# self.contControls = tf.expand_dims(initialControl, axis = 1)
# self.postControls = tf.expand_dims(initialControl, axis = 1)
## initialize knowledge base
# optionally merge question into knowledge base representation
if config.initKBwithQ != "NON":
iVecQuestions = ops.linear(self.vecQuestions, config.ctrlDim, config.memDim, name = "questions")
concatMul = (config.initKBwithQ == "MUL")
cnct, dim = ops.concat(self.knowledgeBase, iVecQuestions, config.memDim, mul = concatMul, expandY = True)
self.knowledgeBase = ops.linear(cnct, dim, config.memDim, name = "initKB")
## initialize question words
# choose question words to work with (original embeddings or encoder outputs)
words = self.questionCntxWords if config.controlContextual else self.questionWords
# optionally add parametric "null" word in the to all questions
if config.addNullWord:
words, questionLengths = self.addNullWord(words, questionLengths)
# project words
self.inWords = self.outWords = words
if config.controlInWordsProj or config.controlOutWordsProj:
pWords = ops.linear(words, config.ctrlDim, config.ctrlDim, name = "wordsProj")
self.inWords = pWords if config.controlInWordsProj else words
self.outWords = pWords if config.controlOutWordsProj else words
# if config.controlCoverage:
# self.coverage = tf.zeros((batchSize, tf.shape(words)[1]), dtype = tf.float32)
# self.coverageBias = tf.get_variable("coverageBias", shape = (),
# initializer = config.controlCoverageBias)
## initialize memory variational dropout mask
if config.memoryVariationalDropout:
self.memDpMask = ops.generateVarDpMask((batchSize, config.memDim), self.dropouts["memory"])
return MACCellTuple(initialControl, initialMemory)