jwyang
push unicl demo
2fafc55
raw history blame
No virus
6.68 kB
from collections import OrderedDict
from typing import Tuple, Union
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from timm.models.layers import DropPath, trunc_normal_
from .registry import register_lang_encoder
logger = logging.getLogger(__name__)
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
pdtype = x.dtype
x = x.float()
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x.to(pdtype) + self.bias
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None,
drop_path: float = 0.0):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
if self.attn_mask is not None else None
return self.attn(
x, x, x,
key_padding_mask=key_padding_mask,
need_weights=False,
attn_mask=self.attn_mask
)[0]
def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self,
context_length: int,
vocab_size: int,
width: int,
layers: int,
heads: int,
drop_path: float = 0.0,
autogressive: bool =True):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, width)
self.context_length = context_length
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, width)
)
self.width = width
self.layers = layers
self.autogressive = autogressive
attn_mask = self.build_attention_mask() if autogressive else None
dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] # stochastic depth decay rule
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
for i in range(layers)
]
)
self.ln_final = LayerNorm(width)
trunc_normal_(self.positional_embedding, std=.02)
# nn.init.normal_(self.token_embedding, std=.02)
trunc_normal_(self.token_embedding.weight, std=.02)
self.apply(self._init_weights)
@property
def dim_out(self):
return self.width
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
logger.info('=> init weight of Linear/Conv2d from trunc norm')
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
logger.info('=> init bias of Linear/Conv2d to zeros')
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
def load_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained, map_location='cpu')
logging.info(f'=> loading pretrained model {pretrained}')
model_dict = self.state_dict()
pretrained_dict = {
k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()
}
need_init_state_dict = {}
for k, v in pretrained_dict.items():
need_init = (
k.split('.')[0] in pretrained_layers
or pretrained_layers[0] == '*'
)
if need_init:
if verbose:
logging.info(f'=> init {k} from {pretrained}')
need_init_state_dict[k] = v
self.load_state_dict(need_init_state_dict, strict=False)
@torch.jit.ignore
def no_weight_decay(self):
return {
'positional_embedding',
'token_embedding',
}
def forward(self, input_ids, attention_mask=None):
key_padding_mask = (input_ids == 0) if not self.autogressive else None
x = self.token_embedding(input_ids) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
for block in self.resblocks:
x = block(x, key_padding_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
return {'last_hidden_state': x}
@register_lang_encoder
def lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
transformer = Transformer(
context_length=config_encoder['CONTEXT_LENGTH'],
vocab_size=tokenizer.vocab_size,
width=config_encoder['WIDTH'],
layers=config_encoder['LAYERS'],
heads=config_encoder['HEADS'],
autogressive=config_encoder.get('AUTOGRESSIVE', True)
)
if config_encoder['LOAD_PRETRAINED']:
transformer.load_pretrained()
return transformer