time / app.py
Charig Yang
examples
4edfabf
import gradio as gr
import cv2
import numpy as np
import torch
import torch.nn as nn
import torchvision.models as models
import einops
def predict(img):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = models.resnet50()
model.fc = nn.Linear(2048, 720)
resume_path = 'full+++++.pth'
model.load_state_dict(torch.load(resume_path, map_location=torch.device(device)))
model.to(device)
with torch.no_grad():
model.eval()
img = cv2.resize(img, (224, 224))/255.
img = np.stack([einops.rearrange(img, 'h w c -> c h w')], 0)
img = torch.Tensor(img).float().to(device)
pred = model(img)
max_pred = torch.argsort(pred, dim=1, descending=True)
max_h = (max_pred[0][0] // 60).item()
max_m = (max_pred[0][0] % 60).item()
return '{}:{}'.format(str(max_h), str(max_m).zfill(2))
inputs = gr.inputs.Image()
io = gr.Interface(
fn=predict,
description='Note that this model ingests clocks that are already cropped, i.e. we do not run object detection.',
title='It\'s About Time: Analog Clock Reading in the Wild',
inputs=inputs,
examples=['d1.png', 'd2.png'],
outputs="text",
)
io.launch(share=True)