regionclip-demo / detectron2 /data /clip_datasets /clip_img_txt_pair_tsv.py
jwyang
first commit
4121bec
raw
history blame
No virus
25.9 kB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from io import BytesIO
import json
import logging
import base64
import threading
import random
import numpy as np
from typing import Callable, List, Tuple, Union
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
import torch.utils.data as data
from .oscar_tsv import InputExample, convert_example_to_features
from detectron2.structures.tsv_file import TSVFile, CompositeTSVFile
from detectron2.data.clip_datasets.clip_prompt_engineering import get_prompt_templates, prompt_engineering
#import spacy
def pre_fetch(tsv_filename: str):
logging.info('Pre-loading %s ...' % tsv_filename)
with open(tsv_filename, 'r'):
logging.info('Pre-loading %s ended.' % tsv_filename)
class CLIPImgTxtPairTSVDataset(data.Dataset):
"""
This class is intended for encapsulating Image/Text pair data for contrastive learning described in
the following paper,
"Learning Transferable Visual Models From Natural Language Supervision" (a.k.a CLIP)
Specifically, it is used to accomadate the tsv data format from Azure Cognition Service Group.
"""
def __init__(self,
image_tsv_file: Union[str, List[str]],
text_tsv_file: Union[str, List[str]],
transforms: Callable = None,
tokenizer: Callable = None,
seq_len = 0, context_length = 77, target_offset=0,
args = None,
dataset_name = "",
tokenizer_type = "bert",
is_train = True,
map_file = None,
filtered_datasets = ''):
self.args = args
self.is_train = is_train
self.dataset_names = dataset_name
self.tokenizer_type = tokenizer_type
self.target_offset = target_offset
self.seq_len = seq_len
self.transforms = transforms
self.tokenizer = tokenizer
self._chunk_sizes = None
self.context_length = context_length
self.prompt_templates = get_prompt_templates() # [:2]
self.spacy_nlp = None # spacy.load('en_core_web_sm')
self.class_selector = None
# self.class_selector = list(self.label2idx.keys()) if self.label2idx else None
self.label2idx = {}
self.idx2label = {}
self.classnames = {}
self.dataset_target_offsets = {}; offset = 0
self.num_classes = sum([len(val) for val in self.classnames.values()])
self.filtered_classnames = []
if isinstance(image_tsv_file, str) and isinstance(text_tsv_file, str):
# single tsv file
if (
os.path.splitext(image_tsv_file)[1].lower() == '.tsv'
and os.path.splitext(text_tsv_file)[1].lower() == '.tsv'
):
self.image_tsv_file = TSVFile(image_tsv_file, if_generate_lineidx=True)
self.text_tsv_file = TSVFile(text_tsv_file, if_generate_lineidx=True)
# multiple tsv files specified in a text file
elif (
os.path.splitext(image_tsv_file)[1].lower() == '.txt'
and os.path.splitext(text_tsv_file)[1].lower() == '.txt'
):
self.image_tsv_file = CompositeTSVFile(image_tsv_file)
self.text_tsv_file = CompositeTSVFile(text_tsv_file)
self._chunk_sizes = self.image_tsv_file.get_chunk_size()
else:
raise ValueError("Invalid input! Please check the tsv filenames.")
# multiple tsv files specified in a list
elif (
isinstance(image_tsv_file, list)
and isinstance(text_tsv_file, list)
):
assert len(image_tsv_file) == len(text_tsv_file), \
"Inconsistent number of Image/Text tsv files!"
assert len(image_tsv_file) == len(text_tsv_file), \
"Inconsistent number of Image/Text tsv files!"
self.image_tsv_path = image_tsv_file
self.text_tsv_path = text_tsv_file
self.image_tsv_file = CompositeTSVFile(image_tsv_file, class_selector=self.class_selector)
self.text_tsv_file = CompositeTSVFile(text_tsv_file, class_selector=self.class_selector)
self._chunk_sizes = self.image_tsv_file.get_chunk_size()
self._accumulated_chunk_sizes = np.cumsum(self._chunk_sizes).tolist()
else:
raise ValueError("Invalid input! Please check the tsv filenames.")
assert len(self.image_tsv_file) == len(self.text_tsv_file), \
"Inconsistent size of Image/Text ({}/{}) data!".format(
len(self.image_tsv_file), len(self.text_tsv_file)
)
def get_chunk_sizes(self):
return self._chunk_sizes
def get_class_boundaries(self):
# The samples of each class are organized class-by-class.
# _class_boundaries stores the lower- and upper-bound of each class.
return self.image_tsv_file.get_class_boundaries()
def _load_map(self, map_file: str):
if not map_file:
return None
label2idx = {}
with open(map_file) as f:
for line in f:
items = line.strip().split('\t')
label2idx[items[0]] = int(items[1])
return label2idx
def _load_darknet_map(self, map_file):
if not map_file:
return None
label2idx = {}
with open(map_file) as f:
linenum = 0
for l in f:
item = l.strip()
label2idx[item] = linenum
linenum += 1
return label2idx
def _pre_tokenize(self):
"""
pre-tokenize class names
"""
input_ids_all = []
input_masks_all = []
segment_ids_all = []
for k in range(len(self.classnames["imagenet"])):
cur_id = 0; img_id = 0
scale = 1.0
v = self.classnames["imagenet"].label_to_name(k)
if isinstance(v, str):
vs = [v]
elif isinstance(v, list):
vs = v
t1s = []
t2s = []
for v in vs:
for pt in self.prompt_templates:
t1s.append(prompt_engineering(v, template=pt))
t2s.append("")
input_ids = []
input_masks = []
segment_ids = []
is_next_labels = [0] * len(t1s)
is_img_matchs = [1] * len(t1s)
img_feat_len = 0
for t1, t2, is_next_label, is_img_match in zip(t1s, t2s, is_next_labels, is_img_matchs):
if self.tokenizer_type == "bert":
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features(self.args, cur_example,
self.seq_len, self.tokenizer,
img_feat_len)
input_ids.append(torch.tensor(cur_features.input_ids, dtype=torch.long))
input_masks.append(torch.tensor(cur_features.input_mask, dtype=torch.long))
segment_ids.append(torch.tensor(cur_features.segment_ids, dtype=torch.long))
elif self.tokenizer_type == "bpe":
tokens_a = t1; tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features_bpe(self.args, cur_example,
self.seq_len, self.tokenizer,
img_feat_len)
input_ids.append(torch.tensor(cur_features.input_ids, dtype=torch.long))
input_masks.append(torch.tensor(cur_features.input_mask, dtype=torch.long))
segment_ids.append(torch.tensor(cur_features.segment_ids, dtype=torch.long))
else:
raise NotImplementedError
input_ids_all.append(torch.stack(input_ids, 0))
input_masks_all.append(torch.stack(input_masks, 0))
segment_ids_all.append(torch.stack(segment_ids, 0))
self.input_ids_all_classes = torch.stack(input_ids_all, 0)
self.input_mask_all_classes = torch.stack(input_masks_all, 0)
self.segment_ids_all_classes = torch.stack(segment_ids_all, 0)
def _online_tokenize(self, text):
# random select a prompt template
temp_idx = np.random.randint(len(self.prompt_templates))
pt = self.prompt_templates[temp_idx]
names = text.split(";")
num_names = np.random.randint(len(names)) + 1
names_sampled = random.sample(names, num_names)
text = ", ".join(names_sampled)
t1 = prompt_engineering(text, template=pt)
cur_id = 0; img_id = 0; scale = 1.0
is_next_label = 0; is_img_match = 1
img_feat_len = 0
if self.tokenizer_type == "bert":
# tokenize
tokens_a = self.tokenizer.tokenize(t1)
tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features(self.args, cur_example,
self.context_length, self.tokenizer,
img_feat_len)
elif self.tokenizer_type == "bpe":
tokens_a = t1; tokens_b = None
# combine to one sample
cur_example = InputExample(guid=cur_id, tokens_a=tokens_a,
tokens_b=tokens_b, is_next=is_next_label,
img_id=img_id, is_img_match=is_img_match)
# transform sample to features
cur_features = convert_example_to_features_bpe(self.args, cur_example,
self.context_length, self.tokenizer,
img_feat_len)
return torch.tensor(cur_features.input_ids, dtype=torch.long), \
torch.tensor(cur_features.input_mask, dtype=torch.long), \
torch.tensor(cur_features.segment_ids, dtype=torch.long)
def get_dataset_name(self, index):
"""
get dataset name according to index
"""
assert index < self._accumulated_chunk_sizes[-1], "index must in the range of accumulated data size"
for k, boundary in enumerate(self._accumulated_chunk_sizes):
if index < boundary:
return self.dataset_names[k], k
def get_target_offset(self, dataset_name):
return self.dataset_target_offsets[dataset_name]
def get_img_label_pair(self, items_image, index):
dataset_name, chunk_id = self.get_dataset_name(index)
target_offset = self.get_target_offset(dataset_name)
_, target, img = self._decode_data(items_image, dataset_name)
if self.transforms:
img = self.transforms(img)
if target == -1:
input_ids, input_mask, segment_ids = \
self._online_tokenize("uncovered image")
else:
classname = self.classnames[dataset_name].labels2names[self.idx2label[dataset_name][target]]
if classname in self.filtered_classnames:
# we filter these classnames for training
target = -1
input_ids, input_mask, segment_ids = \
self._online_tokenize("uncovered image")
else:
input_ids, input_mask, segment_ids = \
self._online_tokenize(classname)
target += target_offset
return img, \
input_ids, \
input_mask, \
segment_ids, \
torch.LongTensor([target]), \
dataset_name
def get_img_txt_pair(self, items_image, items_text, index):
dataset_name, chunk_id = self.get_dataset_name(index)
assert items_text[0] == items_image[0], \
'keys do not match for image ({}) and text ({}) for {} at chunk {}-{}'.format(
len(items_text[0]), len(items_image[0]), dataset_name, chunk_id, self.image_tsv_path[chunk_id]
)
img = self._decode_image(items_image, dataset_name)
# print("index {}, chunk id {}, name {}".format(index, chunk_id, self.image_tsv_path[chunk_id]))
# raise TypeError("cannot decode current item")
img_width, img_height = img.size # img_height, img_width = np.array(img).shape
txts = self._decode_text(items_text)
if self.spacy_nlp is not None:
np_input_ids, np_input_masks, np_segment_ids = self.create_phrase_text(txts)
if self.transforms:
img = self.transforms(img)
if isinstance(txts, str):
input_ids, input_masks, segment_ids = \
convert_txt_to_tokens_bpe(txts, self.tokenizer, self.context_length)
all_str2id_links = []
elif isinstance(txts, list):
input_ids = []
input_masks = []
segment_ids = []
all_str2id_links = []
for txt in txts:
input_id, input_mask, segment_id, str2id_links = \
convert_txt_to_tokens_bpe(txt, self.tokenizer, self.context_length, return_link=True)
input_ids += input_id
input_masks += input_mask
segment_ids += segment_id
all_str2id_links += [str2id_links]
scale = 1.0
img_id = 0
if self.spacy_nlp is not None:
return img, \
torch.tensor(input_ids).long().view(-1), \
torch.tensor(input_masks).long().view(-1), \
torch.tensor(segment_ids).long().view(-1), \
torch.LongTensor([1e5]), \
dataset_name, \
torch.tensor(np_input_ids).long().view(-1), \
torch.tensor(np_input_masks).long().view(-1), \
torch.tensor(np_segment_ids).long().view(-1)
else:
return img, \
torch.tensor(input_ids).long().view(-1), \
torch.tensor(input_masks).long().view(-1), \
torch.tensor(segment_ids).long().view(-1), \
torch.LongTensor([1e5]), \
(dataset_name, items_text[0], (img_height, img_width), all_str2id_links) # dataset name, image id, image height&width, links bet string and tokenized texts
def create_phrase_text(self, txt_list):
""" Use NLP tool to detect noun phrases in captions, fill each identified phrase into a random prompt to create a sentence,
and convert each sentence to bpe tokens
"""
if isinstance(txt_list, str):
txt_list = [txt_list]
# detect noun phrase
noun_phrase = []
for txt in txt_list:
doc = self.spacy_nlp(txt.lower())
this_text = [nc.text for nc in doc.noun_chunks]
this_text = [nc.replace('a ', '').replace('the ', '') for nc in this_text]
noun_phrase.extend(this_text)
noun_phrase = list(set(noun_phrase))
# fill each phrase into a random prompt
text_list = []
pts = random.sample(self.prompt_templates, len(noun_phrase))
for i, np in enumerate(noun_phrase):
text_list.append(prompt_engineering(np, pts[i]))
# convert string into bpe tokens
input_ids = []
input_masks = []
segment_ids = []
for txt in text_list:
input_id, input_mask, segment_id = \
convert_txt_to_tokens_bpe(txt, self.tokenizer, self.context_length)
input_ids += input_id
input_masks += input_mask
segment_ids += segment_id
return input_ids, input_masks, segment_ids
def __getitem__(self, index: Union[int, Tuple[int, int]]):
if isinstance(index, tuple):
items_image = self.image_tsv_file[index[0]]
items_text = self.text_tsv_file[index[0]]
if index[1] >= 0:
tsv_filename = self.image_tsv_file.file_list[index[1]]
# Python threads are not truly parallel. Spawn a new process instead.
# logging.info('Pre-loading %s ...' % tsv_filename)
# os.system('cat ' + tsv_filename + ' > /dev/null &')
x = threading.Thread(
target=pre_fetch, args=(tsv_filename,), daemon=True
)
x.start()
curr_index = index[0]
else:
items_image = self.image_tsv_file[index]
items_text = self.text_tsv_file[index]
curr_index = index
# NOTE: since we duplicate image tsv to text tsv for image-label data,
# we can determine whether the current instance is an image-label pair or
# a image-text pair data based on whether items_image is identical to items_text or not.
if items_image == items_text:
return self.get_img_label_pair(items_image, curr_index)
else:
return self.get_img_txt_pair(items_image, items_text, curr_index)
def _decode_image(self, items: Tuple[str, str], dataset_name=""):
key = items[0]
image = Image.open(BytesIO(base64.b64decode(items[1]))).convert('RGB')
return image
def _decode_text(self, items: Tuple[str, Union[str, dict]]):
key = items[0]
text = ''
if isinstance(items[1], str):
try:
str_dict = json.loads(items[1])
# in this dict, it may contain either "tags" or "captions" or both
keys = [key for key in str_dict.keys()]
selected_key = random.sample(keys, 1)[0]
if selected_key == "captions":
# if this is a caption, we sample a caption
captions = str_dict[selected_key]
text = captions[:5]
# text = random.sample(captions, 1)[0]
elif selected_key == "tags":
# for tags, we randomly disorder it
tags = str_dict[selected_key]
tag_words = tags.split(' ')
random.shuffle(tag_words)
tags_shuffled = " ".join(tag_words)
# add prompt template
pt = random.sample(self.prompt_templates, 1)[0]
text = prompt_engineering(tags_shuffled, pt)
except:
text = items[1]
elif isinstance(items[1], dict):
assert 'captions' in items[1], '"captions" does not in {}'.format(items[1])
captions = items[1]['captions']
if isinstance(captions, list):
text = random.choice(captions)
elif isinstance(captions, str):
text = captions
else:
raise ValueError('captions should be str or list')
return text
def _decode_data(self, items, dataset_name):
key = items[0]
label = self._get_label(items[1], dataset_name)
try:
image = Image.open(BytesIO(base64.b64decode(items[2])))
except:
return None
return key, label, image.convert('RGB')
def _get_label(self, item, dataset_name):
if not self.label2idx[dataset_name]:
return int(item)
if item in self.label2idx[dataset_name]:
return self.label2idx[dataset_name][item]
label = json.loads(item)[0]['class']
if label in self.label2idx[dataset_name]:
return self.label2idx[dataset_name][label]
else:
return -1
def __len__(self):
return len(self.image_tsv_file)
def convert_txt_to_tokens_bpe(text, tokenizer, context_length, return_link=False):
sot_token = tokenizer.encoder["<|startoftext|>"]
eot_token = tokenizer.encoder["<|endoftext|>"]
if return_link:
bpe_tokens, str2id_links = tokenizer.encode(text, return_link=return_link)
str2id_links = [["<|startoftext|>", [sot_token]]] + str2id_links + [["<|endoftext|>", [eot_token]]]
else:
bpe_tokens = tokenizer.encode(text, return_link=return_link)
input_ids = [sot_token] + bpe_tokens + [eot_token]
if len(input_ids) > context_length:
input_ids = input_ids[:context_length]
segment_ids = [0] * len(input_ids)
lm_label_ids = [-1] * len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < context_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == context_length
assert len(input_mask) == context_length
assert len(segment_ids) == context_length
assert len(lm_label_ids) == context_length
if return_link:
return input_ids, input_mask, segment_ids, str2id_links
return input_ids, input_mask, segment_ids
def convert_example_to_features_bpe(args, example, max_seq_length, tokenizer,
img_feat_len, context_length=77):
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param args: parameter settings
:param img_feat_len: lens of actual img features
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
# we do not consider tokens_b for now in original CLIP
text = example.tokens_a
assert isinstance(text, str)
sot_token = tokenizer.encoder["<|startoftext|>"]
eot_token = tokenizer.encoder["<|endoftext|>"]
input_ids = [sot_token] + tokenizer.encode(text) + [eot_token]
if len(input_ids) > context_length:
input_ids = input_ids[:context_length]
segment_ids = [0] * len(input_ids)
lm_label_ids = [-1] * len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < context_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
lm_label_ids.append(-1)
assert len(input_ids) == context_length
assert len(input_mask) == context_length
assert len(segment_ids) == context_length
assert len(lm_label_ids) == context_length
if example.guid < 1:
logging.info("*** Example ***")
logging.info("guid: %s" % example.guid)
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("LM label: %s " % lm_label_ids)
logging.info("Is next sentence label: %s " % example.is_next)
features = InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
is_next=example.is_next,
img_feat_len=img_feat_len,
is_img_match=example.is_img_match)
return features
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, is_next,
lm_label_ids, img_feat_len, is_img_match):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.is_next = is_next
self.lm_label_ids = lm_label_ids
self.img_feat_len = img_feat_len
self.is_img_match = is_img_match