Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import os | |
import sys | |
import tempfile | |
from contextlib import ExitStack, contextmanager | |
from copy import deepcopy | |
from unittest import mock | |
import torch | |
from torch import nn | |
# need some explicit imports due to https://github.com/pytorch/pytorch/issues/38964 | |
import detectron2 # noqa F401 | |
from detectron2.structures import Boxes, Instances | |
from detectron2.utils.env import _import_file | |
_counter = 0 | |
def _clear_jit_cache(): | |
from torch.jit._recursive import concrete_type_store | |
from torch.jit._state import _jit_caching_layer | |
concrete_type_store.type_store.clear() # for modules | |
_jit_caching_layer.clear() # for free functions | |
def _add_instances_conversion_methods(newInstances): | |
""" | |
Add from_instances methods to the scripted Instances class. | |
""" | |
cls_name = newInstances.__name__ | |
def from_instances(instances: Instances): | |
""" | |
Create scripted Instances from original Instances | |
""" | |
fields = instances.get_fields() | |
image_size = instances.image_size | |
ret = newInstances(image_size) | |
for name, val in fields.items(): | |
assert hasattr(ret, f"_{name}"), f"No attribute named {name} in {cls_name}" | |
setattr(ret, name, deepcopy(val)) | |
return ret | |
newInstances.from_instances = from_instances | |
def patch_instances(fields): | |
""" | |
A contextmanager, under which the Instances class in detectron2 is replaced | |
by a statically-typed scriptable class, defined by `fields`. | |
See more in `scripting_with_instances`. | |
""" | |
with tempfile.TemporaryDirectory(prefix="detectron2") as dir, tempfile.NamedTemporaryFile( | |
mode="w", encoding="utf-8", suffix=".py", dir=dir, delete=False | |
) as f: | |
try: | |
# Objects that use Instances should not reuse previously-compiled | |
# results in cache, because `Instances` could be a new class each time. | |
_clear_jit_cache() | |
cls_name, s = _gen_instance_module(fields) | |
f.write(s) | |
f.flush() | |
f.close() | |
module = _import(f.name) | |
new_instances = getattr(module, cls_name) | |
_ = torch.jit.script(new_instances) | |
# let torchscript think Instances was scripted already | |
Instances.__torch_script_class__ = True | |
# let torchscript find new_instances when looking for the jit type of Instances | |
Instances._jit_override_qualname = torch._jit_internal._qualified_name(new_instances) | |
_add_instances_conversion_methods(new_instances) | |
yield new_instances | |
finally: | |
try: | |
del Instances.__torch_script_class__ | |
del Instances._jit_override_qualname | |
except AttributeError: | |
pass | |
sys.modules.pop(module.__name__) | |
def _gen_instance_class(fields): | |
""" | |
Args: | |
fields (dict[name: type]) | |
""" | |
class _FieldType: | |
def __init__(self, name, type_): | |
assert isinstance(name, str), f"Field name must be str, got {name}" | |
self.name = name | |
self.type_ = type_ | |
self.annotation = f"{type_.__module__}.{type_.__name__}" | |
fields = [_FieldType(k, v) for k, v in fields.items()] | |
def indent(level, s): | |
return " " * 4 * level + s | |
lines = [] | |
global _counter | |
_counter += 1 | |
cls_name = "ScriptedInstances{}".format(_counter) | |
field_names = tuple(x.name for x in fields) | |
lines.append( | |
f""" | |
class {cls_name}: | |
def __init__(self, image_size: Tuple[int, int]): | |
self.image_size = image_size | |
self._field_names = {field_names} | |
""" | |
) | |
for f in fields: | |
lines.append( | |
indent(2, f"self._{f.name} = torch.jit.annotate(Optional[{f.annotation}], None)") | |
) | |
for f in fields: | |
lines.append( | |
f""" | |
@property | |
def {f.name}(self) -> {f.annotation}: | |
# has to use a local for type refinement | |
# https://pytorch.org/docs/stable/jit_language_reference.html#optional-type-refinement | |
t = self._{f.name} | |
assert t is not None | |
return t | |
@{f.name}.setter | |
def {f.name}(self, value: {f.annotation}) -> None: | |
self._{f.name} = value | |
""" | |
) | |
# support method `__len__` | |
lines.append( | |
""" | |
def __len__(self) -> int: | |
""" | |
) | |
for f in fields: | |
lines.append( | |
f""" | |
t = self._{f.name} | |
if t is not None: | |
return len(t) | |
""" | |
) | |
lines.append( | |
""" | |
raise NotImplementedError("Empty Instances does not support __len__!") | |
""" | |
) | |
# support method `has` | |
lines.append( | |
""" | |
def has(self, name: str) -> bool: | |
""" | |
) | |
for f in fields: | |
lines.append( | |
f""" | |
if name == "{f.name}": | |
return self._{f.name} is not None | |
""" | |
) | |
lines.append( | |
""" | |
return False | |
""" | |
) | |
# support method `to` | |
lines.append( | |
f""" | |
def to(self, device: torch.device) -> "{cls_name}": | |
ret = {cls_name}(self.image_size) | |
""" | |
) | |
for f in fields: | |
if hasattr(f.type_, "to"): | |
lines.append( | |
f""" | |
t = self._{f.name} | |
if t is not None: | |
ret._{f.name} = t.to(device) | |
""" | |
) | |
else: | |
# For now, ignore fields that cannot be moved to devices. | |
# Maybe can support other tensor-like classes (e.g. __torch_function__) | |
pass | |
lines.append( | |
""" | |
return ret | |
""" | |
) | |
# support method `getitem` | |
lines.append( | |
f""" | |
def __getitem__(self, item) -> "{cls_name}": | |
ret = {cls_name}(self.image_size) | |
""" | |
) | |
for f in fields: | |
lines.append( | |
f""" | |
t = self._{f.name} | |
if t is not None: | |
ret._{f.name} = t[item] | |
""" | |
) | |
lines.append( | |
""" | |
return ret | |
""" | |
) | |
# support method `get_fields()` | |
lines.append( | |
""" | |
def get_fields(self) -> Dict[str, Tensor]: | |
ret = {} | |
""" | |
) | |
for f in fields: | |
if f.type_ == Boxes: | |
stmt = "t.tensor" | |
elif f.type_ == torch.Tensor: | |
stmt = "t" | |
else: | |
stmt = f'assert False, "unsupported type {str(f.type_)}"' | |
lines.append( | |
f""" | |
t = self._{f.name} | |
if t is not None: | |
ret["{f.name}"] = {stmt} | |
""" | |
) | |
lines.append( | |
""" | |
return ret""" | |
) | |
return cls_name, os.linesep.join(lines) | |
def _gen_instance_module(fields): | |
# TODO: find a more automatic way to enable import of other classes | |
s = """ | |
from copy import deepcopy | |
import torch | |
from torch import Tensor | |
import typing | |
from typing import * | |
import detectron2 | |
from detectron2.structures import Boxes, Instances | |
""" | |
cls_name, cls_def = _gen_instance_class(fields) | |
s += cls_def | |
return cls_name, s | |
def _import(path): | |
return _import_file( | |
"{}{}".format(sys.modules[__name__].__name__, _counter), path, make_importable=True | |
) | |
def patch_builtin_len(modules=()): | |
""" | |
Patch the builtin len() function of a few detectron2 modules | |
to use __len__ instead, because __len__ does not convert values to | |
integers and therefore is friendly to tracing. | |
Args: | |
modules (list[stsr]): names of extra modules to patch len(), in | |
addition to those in detectron2. | |
""" | |
def _new_len(obj): | |
return obj.__len__() | |
with ExitStack() as stack: | |
MODULES = [ | |
"detectron2.modeling.roi_heads.fast_rcnn", | |
"detectron2.modeling.roi_heads.mask_head", | |
"detectron2.modeling.roi_heads.keypoint_head", | |
] + list(modules) | |
ctxs = [stack.enter_context(mock.patch(mod + ".len")) for mod in MODULES] | |
for m in ctxs: | |
m.side_effect = _new_len | |
yield | |
def patch_nonscriptable_classes(): | |
""" | |
Apply patches on a few nonscriptable detectron2 classes. | |
Should not have side-effects on eager usage. | |
""" | |
# __prepare_scriptable__ can also be added to models for easier maintenance. | |
# But it complicates the clean model code. | |
from detectron2.modeling.backbone import ResNet, FPN | |
# Due to https://github.com/pytorch/pytorch/issues/36061, | |
# we change backbone to use ModuleList for scripting. | |
# (note: this changes param names in state_dict) | |
def prepare_resnet(self): | |
ret = deepcopy(self) | |
ret.stages = nn.ModuleList(ret.stages) | |
for k in self.stage_names: | |
delattr(ret, k) | |
return ret | |
ResNet.__prepare_scriptable__ = prepare_resnet | |
def prepare_fpn(self): | |
ret = deepcopy(self) | |
ret.lateral_convs = nn.ModuleList(ret.lateral_convs) | |
ret.output_convs = nn.ModuleList(ret.output_convs) | |
for name, _ in self.named_children(): | |
if name.startswith("fpn_"): | |
delattr(ret, name) | |
return ret | |
FPN.__prepare_scriptable__ = prepare_fpn | |
# Annotate some attributes to be constants for the purpose of scripting, | |
# even though they are not constants in eager mode. | |
from detectron2.modeling.roi_heads import StandardROIHeads | |
if hasattr(StandardROIHeads, "__annotations__"): | |
# copy first to avoid editing annotations of base class | |
StandardROIHeads.__annotations__ = deepcopy(StandardROIHeads.__annotations__) | |
StandardROIHeads.__annotations__["mask_on"] = torch.jit.Final[bool] | |
StandardROIHeads.__annotations__["keypoint_on"] = torch.jit.Final[bool] | |
# These patches are not supposed to have side-effects. | |
patch_nonscriptable_classes() | |
def freeze_training_mode(model): | |
""" | |
A context manager that annotates the "training" attribute of every submodule | |
to constant, so that the training codepath in these modules can be | |
meta-compiled away. Upon exiting, the annotations are reverted. | |
""" | |
classes = {type(x) for x in model.modules()} | |
# __constants__ is the old way to annotate constants and not compatible | |
# with __annotations__ . | |
classes = {x for x in classes if not hasattr(x, "__constants__")} | |
for cls in classes: | |
cls.__annotations__["training"] = torch.jit.Final[bool] | |
yield | |
for cls in classes: | |
cls.__annotations__["training"] = bool | |