Spaces:
Runtime error
Runtime error
import gzip | |
import html | |
import os | |
from functools import lru_cache | |
import ftfy | |
import regex as re | |
import torch | |
import numpy as np | |
from typing import Union, List | |
# https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py | |
def default_bpe(): | |
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
"""Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
def basic_clean(text): | |
text = ftfy.fix_text(text) | |
text = html.unescape(html.unescape(text)) | |
return text.strip() | |
def whitespace_clean(text): | |
text = re.sub(r'\s+', ' ', text) | |
text = text.strip() | |
return text | |
class SimpleTokenizer(object): | |
def __init__(self, bpe_path: str = default_bpe()): | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') | |
merges = merges[1:49152-256-2+1] | |
merges = [tuple(merge.split()) for merge in merges] | |
vocab = list(bytes_to_unicode().values()) | |
vocab = vocab + [v+'</w>' for v in vocab] | |
self.vocab = vocab | |
for merge in merges: | |
vocab.append(''.join(merge)) | |
vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |
self.encoder = dict(zip(vocab, range(len(vocab)))) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} | |
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token[:-1]) + ( token[-1] + '</w>',) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token+'</w>' | |
while True: | |
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
new_word.append(first+second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def encode(self, text): | |
bpe_tokens = [] | |
text = whitespace_clean(basic_clean(text)).lower() | |
for token in re.findall(self.pat, text): | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') | |
return text | |
# https://github.com/openai/CLIP/blob/main/clip/clip.py | |
#_tokenizer = SimpleTokenizer() | |
def tokenize(texts: Union[str, List[str]], context_length: int = 77): | |
if isinstance(texts, str): | |
texts = [texts] | |
sot_token = _tokenizer.encoder["<|startoftext|>"] | |
eot_token = _tokenizer.encoder["<|endoftext|>"] | |
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] | |
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
for i, tokens in enumerate(all_tokens): | |
if len(tokens) > context_length: | |
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
result[i, :len(tokens)] = torch.tensor(tokens) | |
return result | |
# prompt_engineering.py | |
def get_prompt_templates(): | |
# prompt_templates = [ | |
# 'There is a {} in the scene.', | |
# 'There is the {} in the scene.', | |
# 'a photo of a {} in the scene.', | |
# 'a photo of the {} in the scene.', | |
# 'a photo of one {} in the scene.', | |
# 'itap of a {}.', | |
# 'itap of my {}.', # itap: I took a picture of | |
# 'itap of the {}.', | |
# 'a photo of a {}.', | |
# 'a photo of my {}.', | |
# 'a photo of the {}.', | |
# 'a photo of one {}.', | |
# 'a photo of many {}.', | |
# 'a good photo of a {}.', | |
# 'a good photo of the {}.', | |
# 'a bad photo of a {}.', | |
# 'a bad photo of the {}.', | |
# 'a photo of a nice {}.', | |
# 'a photo of the nice {}.', | |
# 'a photo of a cool {}.', | |
# 'a photo of the cool {}.', | |
# 'a photo of a weird {}.', | |
# 'a photo of the weird {}.', | |
# 'a photo of a small {}.', | |
# 'a photo of the small {}.', | |
# 'a photo of a large {}.', | |
# 'a photo of the large {}.', | |
# 'a photo of a clean {}.', | |
# 'a photo of the clean {}.', | |
# 'a photo of a dirty {}.', | |
# 'a photo of the dirty {}.', | |
# 'a bright photo of a {}.', | |
# 'a bright photo of the {}.', | |
# 'a dark photo of a {}.', | |
# 'a dark photo of the {}.', | |
# 'a photo of a hard to see {}.', | |
# 'a photo of the hard to see {}.', | |
# 'a low resolution photo of a {}.', | |
# 'a low resolution photo of the {}.', | |
# 'a cropped photo of a {}.', | |
# 'a cropped photo of the {}.', | |
# 'a close-up photo of a {}.', | |
# 'a close-up photo of the {}.', | |
# 'a jpeg corrupted photo of a {}.', | |
# 'a jpeg corrupted photo of the {}.', | |
# 'a blurry photo of a {}.', | |
# 'a blurry photo of the {}.', | |
# 'a pixelated photo of a {}.', | |
# 'a pixelated photo of the {}.', | |
# 'a black and white photo of the {}.', | |
# 'a black and white photo of a {}.', | |
# 'a plastic {}.', | |
# 'the plastic {}.', | |
# 'a toy {}.', | |
# 'the toy {}.', | |
# 'a plushie {}.', | |
# 'the plushie {}.', | |
# 'a cartoon {}.', | |
# 'the cartoon {}.', | |
# 'an embroidered {}.', | |
# 'the embroidered {}.', | |
# 'a painting of the {}.', | |
# 'a painting of a {}.', | |
# ] | |
prompt_templates = [ | |
'{}.', | |
'a photo of a {}.', | |
'a bad photo of a {}.', | |
'a photo of many {}.', | |
'a sculpture of a {}.', | |
'a photo of the hard to see {}.', | |
'a low resolution photo of the {}.', | |
'a rendering of a {}.', | |
'graffiti of a {}.', | |
'a bad photo of the {}.', | |
'a cropped photo of the {}.', | |
'a tattoo of a {}.', | |
'the embroidered {}.', | |
'a photo of a hard to see {}.', | |
'a bright photo of a {}.', | |
'a photo of a clean {}.', | |
'a photo of a dirty {}.', | |
'a dark photo of the {}.', | |
'a drawing of a {}.', | |
'a photo of my {}.', | |
'the plastic {}.', | |
'a photo of the cool {}.', | |
'a close-up photo of a {}.', | |
'a black and white photo of the {}.', | |
'a painting of the {}.', | |
'a painting of a {}.', | |
'a pixelated photo of the {}.', | |
'a sculpture of the {}.', | |
'a bright photo of the {}.', | |
'a cropped photo of a {}.', | |
'a plastic {}.', | |
'a photo of the dirty {}.', | |
'a jpeg corrupted photo of a {}.', | |
'a blurry photo of the {}.', | |
'a photo of the {}.', | |
'a good photo of the {}.', | |
'a rendering of the {}.', | |
'a {} in a video game.', | |
'a photo of one {}.', | |
'a doodle of a {}.', | |
'a close-up photo of the {}.', | |
'the origami {}.', | |
'the {} in a video game.', | |
'a sketch of a {}.', | |
'a doodle of the {}.', | |
'a origami {}.', | |
'a low resolution photo of a {}.', | |
'the toy {}.', | |
'a rendition of the {}.', | |
'a photo of the clean {}.', | |
'a photo of a large {}.', | |
'a rendition of a {}.', | |
'a photo of a nice {}.', | |
'a photo of a weird {}.', | |
'a blurry photo of a {}.', | |
'a cartoon {}.', | |
'art of a {}.', | |
'a sketch of the {}.', | |
'a embroidered {}.', | |
'a pixelated photo of a {}.', | |
'itap of the {}.', | |
'a jpeg corrupted photo of the {}.', | |
'a good photo of a {}.', | |
'a plushie {}.', | |
'a photo of the nice {}.', | |
'a photo of the small {}.', | |
'a photo of the weird {}.', | |
'the cartoon {}.', | |
'art of the {}.', | |
'a drawing of the {}.', | |
'a photo of the large {}.', | |
'a black and white photo of a {}.', | |
'the plushie {}.', | |
'a dark photo of a {}.', | |
'itap of a {}.', | |
'graffiti of the {}.', | |
'a toy {}.', | |
'itap of my {}.', | |
'a photo of a cool {}.', | |
'a photo of a small {}.', | |
'a tattoo of the {}.', | |
] | |
return prompt_templates | |
def prompt_engineering(classnames, template=""): | |
return template.replace('{}', classnames.replace(',', '').replace('+', ' ')) | |
# clip_img_tsv.py | |
def convert_example_to_features_bpe(text, tokenizer, sot_token, eot_token, context_length=77): | |
""" | |
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample. | |
:param tokenizer: Tokenizer | |
:return: List, a list containing token id, padded by 0 | |
""" | |
assert isinstance(text, str) | |
input_ids = [sot_token] + tokenizer.encode(text) + [eot_token] | |
if len(input_ids) > context_length: | |
input_ids = input_ids[:context_length] | |
input_ids = np.array(input_ids) | |
pad_input_ids = np.zeros(context_length) | |
pad_input_ids[:input_ids.shape[0]] = input_ids | |
return pad_input_ids | |
def pre_tokenize(class_names): | |
""" | |
pre-tokenize class names | |
:param class_names: List, a list of class names | |
:param tokenizer: Tokenizer, SimpleTokenizer() | |
:return: Tensor, containing all prompts for all classes, [#cls, #prompts, context_length] | |
""" | |
# tokenizer | |
tokenizer = SimpleTokenizer() | |
sot_token = tokenizer.encoder["<|startoftext|>"] | |
eot_token = tokenizer.encoder["<|endoftext|>"] | |
# prompt engineering | |
prompt_templates = get_prompt_templates() | |
input_ids_all = [] | |
for k in range(len(class_names)): | |
v = class_names[k] | |
if isinstance(v, str): | |
vs = [v] | |
elif isinstance(v, list): | |
vs = v | |
t1s = [] | |
for v in vs: | |
for pt in prompt_templates: | |
t1s.append(prompt_engineering(v, template=pt)) | |
input_ids = [] | |
for t1 in t1s: | |
this_input_ids = convert_example_to_features_bpe(t1, tokenizer, sot_token, eot_token) | |
input_ids.append(torch.tensor(this_input_ids, dtype=torch.long)) | |
input_ids_all.append(torch.stack(input_ids, 0)) | |
input_ids_all_classes = torch.stack(input_ids_all, 0) | |
return input_ids_all_classes | |
if __name__ == "__main__": | |
flatten_input_ids = pre_tokenize() | |