jwyang
first commit
4121bec
raw
history blame
17 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import os
from fvcore.common.timer import Timer
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from .builtin_meta import _get_coco_instances_meta
from .lvis_v0_5_categories import LVIS_CATEGORIES as LVIS_V0_5_CATEGORIES
from .lvis_v1_categories import LVIS_CATEGORIES as LVIS_V1_CATEGORIES
import torch
import numpy as np
"""
This file contains functions to parse LVIS-format annotations into dicts in the
"Detectron2 format".
"""
logger = logging.getLogger(__name__)
__all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"]
def register_lvis_instances(name, metadata, json_file, image_root):
"""
Register a dataset in LVIS's json annotation format for instance detection and segmentation.
Args:
name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train".
metadata (dict): extra metadata associated with this dataset. It can be an empty dict.
json_file (str): path to the json instance annotation file.
image_root (str or path-like): directory which contains all the images.
"""
DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name))
MetadataCatalog.get(name).set(
json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata
)
def load_lvis_json_original(json_file, image_root, dataset_name=None, filter_open_cls=True, clip_gt_crop=True, max_gt_per_img=500):
"""
Load a json file in LVIS's annotation format.
Args:
json_file (str): full path to the LVIS json annotation file.
image_root (str): the directory where the images in this json file exists.
dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train").
If provided, this function will put "thing_classes" into the metadata
associated with this dataset.
filter_open_cls: open-set setting, filter the open-set categories during training
clip_gt_crop: must filter images with empty annotations or too many GT bbox,
even if in testing (eg, use CLIP on GT regions)
Returns:
list[dict]: a list of dicts in Detectron2 standard format. (See
`Using Custom Datasets </tutorials/datasets.html>`_ )
Notes:
1. This function does not read the image files.
The results do not have the "image" field.
"""
from lvis import LVIS
if 'train' in dataset_name: #'zeroshot' in dataset_name and 'train' in dataset_name: # openset setting, filter the novel classes during training
filter_open_cls = True
else:
filter_open_cls = False
json_file = PathManager.get_local_path(json_file)
timer = Timer()
lvis_api = LVIS(json_file)
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
if dataset_name is not None:
meta = get_lvis_instances_meta(dataset_name)
MetadataCatalog.get(dataset_name).set(**meta)
# sort indices for reproducible results
img_ids = sorted(lvis_api.imgs.keys())
# imgs is a list of dicts, each looks something like:
# {'license': 4,
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
# 'file_name': 'COCO_val2014_000000001268.jpg',
# 'height': 427,
# 'width': 640,
# 'date_captured': '2013-11-17 05:57:24',
# 'id': 1268}
imgs = lvis_api.load_imgs(img_ids)
# anns is a list[list[dict]], where each dict is an annotation
# record for an object. The inner list enumerates the objects in an image
# and the outer list enumerates over images. Example of anns[0]:
# [{'segmentation': [[192.81,
# 247.09,
# ...
# 219.03,
# 249.06]],
# 'area': 1035.749,
# 'image_id': 1268,
# 'bbox': [192.81, 224.8, 74.73, 33.43],
# 'category_id': 16,
# 'id': 42986},
# ...]
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
# Sanity check that each annotation has a unique id
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique".format(
json_file
)
imgs_anns = list(zip(imgs, anns))
logger.info("Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file))
def get_file_name(img_root, img_dict):
# Determine the path including the split folder ("train2017", "val2017", "test2017") from
# the coco_url field. Example:
# 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg'
split_folder, file_name = img_dict["coco_url"].split("/")[-2:]
return os.path.join(img_root + split_folder, file_name)
dataset_dicts = []
cls_type_dict = {cls_meta['id']: cls_meta['frequency'] for cls_meta in lvis_api.dataset['categories']} # map cls id to cls type
area_dict = {'r': [], 'c': [], 'f': []} # calculate box area for each type of class
# import os
# from PIL import Image
# custom_img_path = 'datasets/epic_sample_frames'
# custom_img_list = [os.path.join(custom_img_path, item) for item in os.listdir(custom_img_path)]
# cnt = 0
for (img_dict, anno_dict_list) in imgs_anns:
record = {}
record["file_name"] = get_file_name(image_root, img_dict)
# record["file_name"] = custom_img_list[cnt]; cnt += 1;
# if cnt == 46:
# break # get_file_name(image_root, img_dict)
# img_file = Image.open(record["file_name"])
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
# record["height"] = img_file.size[1] # img_dict["height"]
# record["width"] = img_file.size[0] # img_dict["width"]
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
image_id = record["image_id"] = img_dict["id"]
objs = []
for anno in anno_dict_list:
# Check that the image_id in this annotation is the same as
# the image_id we're looking at.
# This fails only when the data parsing logic or the annotation file is buggy.
assert anno["image_id"] == image_id
obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS}
# LVIS data loader can be used to load COCO dataset categories. In this case `meta`
# variable will have a field with COCO-specific category mapping.
if dataset_name is not None and "thing_dataset_id_to_contiguous_id" in meta:
obj["category_id"] = meta["thing_dataset_id_to_contiguous_id"][anno["category_id"]]
else:
obj["category_id"] = anno["category_id"] - 1 # Convert 1-indexed to 0-indexed
obj['frequency'] = cls_type_dict[anno["category_id"]] # used for open-set filtering
if filter_open_cls: # filter categories for open-set training
if obj['frequency'] == 'r':
continue
area_dict[obj['frequency']].append(anno["bbox"][2] * anno["bbox"][3])
segm = anno["segmentation"] # list[list[float]]
# filter out invalid polygons (< 3 points)
valid_segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
assert len(segm) == len(
valid_segm
), "Annotation contains an invalid polygon with < 3 points"
assert len(segm) > 0
obj["segmentation"] = segm
objs.append(obj)
if (filter_open_cls or clip_gt_crop) and len(objs) == 0: # no annotation for this image
continue
record["annotations"] = objs
dataset_dicts.append(record)
# For the training in open-set setting, map original category id to new category id number (base categories)
if filter_open_cls:
# get new category id in order
old_to_new = {}
for i in range(len(cls_type_dict)):
if cls_type_dict[i+1] != 'r': # cls_type_dict is 1-indexed
old_to_new[i] = len(old_to_new)
# map annotation to new category id
for record in dataset_dicts:
record.pop('not_exhaustive_category_ids') # won't be used
record.pop('neg_category_ids') # won't be used
for obj in record['annotations']:
obj['category_id'] = old_to_new[obj['category_id']] # 0-indexed id
assert obj['frequency'] != 'r'
logger.info("\n\nModel will be trained in the open-set setting! {} / {} categories are kept.\n".format(len(old_to_new),len(cls_type_dict)))
# calculate box area for each type of class
area_lst = np.array([0, 400, 1600, 2500, 5000, 10000, 22500, 224 * 224, 90000, 160000, 1e8])
# rare_cls = np.histogram(np.array(area_dict['r']), bins=area_lst)[0]
# common_cls = np.histogram(np.array(area_dict['c']), bins=area_lst)[0]
# freq_cls = np.histogram(np.array(area_dict['f']), bins=area_lst)[0]
# print("rare classes: {}; \ncommon classes: {}; \nfrequent classes: {}".format(rare_cls/rare_cls.sum()*100, common_cls/common_cls.sum()*100, freq_cls/freq_cls.sum()*100))
# # apply CLIP on GT regions: some images has large number of GT bbox (eg, 759), remove them, otherwise, OOM
if clip_gt_crop:
# len_num = sorted([len(item["annotations"]) for item in dataset_dicts], reverse=True)
dataset_dicts = sorted(dataset_dicts, key=lambda x: len(x["annotations"]), reverse=True)
for record in dataset_dicts:
record["annotations"] = record["annotations"][:max_gt_per_img] # only <10 / 20k images in test have >300 GT boxes
#dataset_dicts = sorted(dataset_dicts, key=lambda x: len(x["annotations"]))[:12] #[12000:14000] #
#dataset_dicts = sorted(dataset_dicts, key=lambda x: len(x["annotations"]))[-1200:-1000]
#eval_cls_acc(dataset_dicts, area_lst)
return dataset_dicts
def load_lvis_json(json_file, image_root, dataset_name=None, filter_open_cls=True, clip_gt_crop=True, max_gt_per_img=500, custom_img_path='datasets/custom_images'):
"""
This is a tentitive function for loading custom images.
Given a folder of images (eg, 'datasets/custom_images'), load their meta data into a dictionary
"""
import os
from PIL import Image
custom_img_list = [os.path.join(custom_img_path, item) for item in os.listdir(custom_img_path)]
dataset_dicts = []
for f_i, file_name in enumerate(custom_img_list):
record = {}
record["file_name"] = file_name
img_file = Image.open(record["file_name"])
record["height"] = img_file.size[1]
record["width"] = img_file.size[0]
record["image_id"] = f_i
dataset_dicts.append(record)
return dataset_dicts
def eval_cls_acc(dataset_dicts, area_lst):
#pred_file = '/home/v-yiwuzhong/projects/detectron2-open-set/output/rcnn_gt_crop/vit/instances_predictions.pth'
#pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_rcnn_resnet50_crop_regions_perclassnms/inference/instances_predictions.pth'
#pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_rcnn_vitb32_crop_regions_perclassnms/inference/instances_predictions.pth'
#pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_roifeatmap/inference/instances_predictions.pth'
#pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_supmrcnnbaselinefpn/inference/instances_predictions.pth'
#pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_supmrcnnbaselinec4/inference/instances_predictions.pth'
pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_e1-3-3gtbox/inference/instances_predictions.pth'
predictions = torch.load(pred_file)
correct = 0
wrong = 0
area_threshold = area_lst[1:-1] # np.array([400, 1600, 2500, 5000, 10000, 22500, 224 * 224, 90000, 160000])
acc_list = [[0, 0] for i in range(area_threshold.shape[0] + 1)]
small_cnt = 0
for preds, gts in zip(predictions, dataset_dicts):
assert preds['image_id'] == gts['image_id'] # same image
#assert len(preds['instances']) == len(gts['annotations'])
box_seen = {} # keep a set for the predicted boxes that have been checked
for pred, gt in zip(preds['instances'], gts['annotations']):
if pred['bbox'][0] in box_seen: # duplicate box due to perclass NMS
continue
else:
box_seen[pred['bbox'][0]] = 1
if np.sum(np.array(pred['bbox']) - np.array(gt['bbox'])) < 1.0: # same box
pass
else: # has been NMS and shuffled
for gt in gts['annotations']:
if np.sum(np.array(pred['bbox']) - np.array(gt['bbox'])) < 1.0: # same box
break
assert np.sum(np.array(pred['bbox']) - np.array(gt['bbox'])) < 1.0 # same box
this_area = gt['bbox'][2] * gt['bbox'][3]
block = (area_threshold < this_area).nonzero()[0].shape[0]
if pred['category_id'] == gt['category_id']: # matched
correct += 1
acc_list[block][0] += 1
else:
wrong += 1
acc_list[block][1] += 1
print("\n\nGot correct {} and wrong {}. Accuracy is {} / {} = {}\n\n".format(correct,wrong,correct,correct+wrong,correct/(correct+wrong)))
block_acc = [100 * acc_list[i][0] / (acc_list[i][0] + acc_list[i][1]) for i in range(len(acc_list))]
block_acc = [round(i, 1) for i in block_acc]
print("Block accuracy: {}".format(block_acc))
block_num = [acc_list[i][0] + acc_list[i][1] for i in range(len(acc_list))]
block_num = list(block_num / np.sum(block_num) * 100)
block_num = [round(i, 1) for i in block_num]
print("Block #instances: {}".format(block_num))
return
def get_lvis_instances_meta(dataset_name):
"""
Load LVIS metadata.
Args:
dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5").
Returns:
dict: LVIS metadata with keys: thing_classes
"""
if "cocofied" in dataset_name:
return _get_coco_instances_meta()
if "v0.5" in dataset_name:
return _get_lvis_instances_meta_v0_5()
elif "v1" in dataset_name:
return _get_lvis_instances_meta_v1()
raise ValueError("No built-in metadata for dataset {}".format(dataset_name))
def _get_lvis_instances_meta_v0_5():
assert len(LVIS_V0_5_CATEGORIES) == 1230
cat_ids = [k["id"] for k in LVIS_V0_5_CATEGORIES]
assert min(cat_ids) == 1 and max(cat_ids) == len(
cat_ids
), "Category ids are not in [1, #categories], as expected"
# Ensure that the category list is sorted by id
lvis_categories = sorted(LVIS_V0_5_CATEGORIES, key=lambda x: x["id"])
thing_classes = [k["synonyms"][0] for k in lvis_categories]
meta = {"thing_classes": thing_classes}
return meta
def _get_lvis_instances_meta_v1():
assert len(LVIS_V1_CATEGORIES) == 1203
cat_ids = [k["id"] for k in LVIS_V1_CATEGORIES]
assert min(cat_ids) == 1 and max(cat_ids) == len(
cat_ids
), "Category ids are not in [1, #categories], as expected"
# Ensure that the category list is sorted by id
lvis_categories = sorted(LVIS_V1_CATEGORIES, key=lambda x: x["id"])
thing_classes = [k["synonyms"][0] for k in lvis_categories]
meta = {"thing_classes": thing_classes}
return meta
if __name__ == "__main__":
"""
Test the LVIS json dataset loader.
Usage:
python -m detectron2.data.datasets.lvis \
path/to/json path/to/image_root dataset_name vis_limit
"""
import sys
import numpy as np
from detectron2.utils.logger import setup_logger
from PIL import Image
import detectron2.data.datasets # noqa # add pre-defined metadata
from detectron2.utils.visualizer import Visualizer
logger = setup_logger(name=__name__)
meta = MetadataCatalog.get(sys.argv[3])
dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3])
logger.info("Done loading {} samples.".format(len(dicts)))
dirname = "lvis-data-vis"
os.makedirs(dirname, exist_ok=True)
for d in dicts[: int(sys.argv[4])]:
img = np.array(Image.open(d["file_name"]))
visualizer = Visualizer(img, metadata=meta)
vis = visualizer.draw_dataset_dict(d)
fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
vis.save(fpath)